High Electrochemical Performances of LiFePO4 Cathode Material Prepared from Surface Modification by Carbon Coating using Sucrose via Sol-gel Method

High Electrochemical Performances of LiFePO4 Cathode Material Prepared from Surface Modification by Carbon Coating using Sucrose via Sol-gel Method

Jong-Tae Son 

Department of Nano Polymer Science and Engineering, Chungju National University, Chungju 380-702, Republic of Korea

Corresponding Author Email: 
12 April 2010
1 October 2010
8 November 2010
| Citation

In this study, LiFePO4 cathode was modified using the sucrose via sol-gel method. The carbon coated LiFePO4 was characterized using XRD, SEM and EDS techniques. The XRD patterns of carbon coated LiFePO4 revealed that the coating did not affect the crystal structure of the parent powder. The carbon coated LiFePO4 has a discharge capacity of 143 mAh/g in the voltage range of 2.8-4.2V vs Li/Li+. The cathode exhibited a stable capacity on cycling, and a good rate capability in the current range of 0.1-4.0C. Additionally, the carbon coated LiFePO4 compound exhibited a highly improved area-specific impedance (ASI), which is one of the most important properties for battery performances. The results indicated that this cathode material could be useful for lithium-ion cells because it has a much lower cost than LiCoO2-containing cells, and high safety.


Cathode material; LiFePO4; sol-gel; Sucrose; Lithium ion battery

1. Introduction
2. Experimental
3. Results
4. Conclusions

The research was supported by a grant from the Academic Research Program of Chungju National University in 2008 and this research was also supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0003935) in 2010.


[1] A.M. Andersson, D.P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, J. Electrochem. Soc., 149, A1358 (2002).

[2] T. Ohzuku, Y. Makimura, Chem. Lett., 30, 642 (2001).

[3] D.D. MacNeil, Z. Lu, J.R. Dahn, J. Electrochem. Soc, 149, A1332 (2002).

[4] Jong-Tae Son, E.J. Cairns, Electrochem. Solid-State Lett., 9, A27 (2006).

[5] A. Yamada, Y. Kudo, K.Y. Liu, J. Electrochem. Soc., 148, A1153 (2001).

[6] J.T. Son, G.S. Park, H.T. Chung and H.G. Kim, J. Power Sources, 126, 182 (2004).

[7] A. Yamada, S.C. Chung, J. Electrochem. Soc., 148, A960 (2001).

[8] G. Li, H. Azuma, M. Thoda, Electrochem. Solid-State Lett., 5, A135 (2002).

[9] J.K. Kim, G.S. Chauhan, J.H. Ahn, H.J. Ahn, J. Power Sources, 189, 391 (2009).

[10] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, S.H. Lee, K.T. Kang, H.G. Kim, J. Power Sources, 129, 311 (2004).

[11] D. Kovacheva, H. Gadjov, K. Petrov, S. Mandal, M.G. Lazarraga, L. Pascual, J.M. Amarilla, P. Herrero, J.M. Rojo, J. Mater. Chem., 12, 1184 (2002).

[12] H. Gadjov, M. Gorova, V. Kotzeva, G. Avdeev, S. Uzunova, D. Kovacheva, J. Power Sources, 134, 110 (2004).

[13] J.R. Dahn, E.W. Fuller, M. Obrovac, U. Von Sacken, Solid State Ionics, 69, 265 (1994).

[14] S.-W. Oh, S.-H. Park, J.-H. Kim, Y.-C. Bae Y.-K. Sun, J. Power Sources, 157, 464 (2006).

[15] I. Belharouak, Y.-K. Sun, J. Liu, K. Amine, J. Power Sources, 123, 247 (2003).

[16] I.V. Thorat, V. Mathur, J.N. Harb, D.R. Wh, J. Power Sources, 162, 673 (2006).