Effect of a Rigid Gas Diffusion Media Applied as Distributor of Reagents in a PEMFC in Operation, Part I: Dry Gases

Effect of a Rigid Gas Diffusion Media Applied as Distributor of Reagents in a PEMFC in Operation, Part I: Dry Gases

C.M. Bautista-RodriguezM.G.A. Rosas-Paleta J.A. Rivera-Marquez A.B. Tapia-Pachuca J.R. Garcia de la Vega 

Alter Energías Grupo, Tepetitlán No. 63, Col Lomas del Sur, 72470 Puebla, Puebla.

BUAP. Facultad de Ingeniería Química. Av. San Claudio y 18 Sur -CU-, 72590 Puebla, Puebla.

UHDE de Engineering de México S.A. Paseo de las Palmas 405. CP 11000 Lomas de Chapultepec, DF. México.

Corresponding Author Email: 
celso.bautista@thyssenkrupp.com
Page: 
261-270
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.168
Received: 
7 November 2009
| |
Accepted: 
8 February 2010
| | Citation
Abstract: 

Several mass transport phenomena develop during the operation of a PEMFC; each one of this generates a mechanical - physics resistance to some extent, implying limitations during operation. In a conventional PEMFC, the feeding reactive gases to the reaction sites are conduced by a series of elements such as: channels in gas distributor, diffusion layer on the electrodes and the active layer. Inside of this elements reagents concentration gradients are generates before arriving to the active sites. Additionally, at high values of current density, the resistance to the mass transport of reagents is increased by the presence of water-product in the pores of electrodes, reducing significantly the performance of the PEMFC. This work focuses on reducing the resistance to mass transport by applying a rigid gas diffusion media including as gas distributor including a high number of macropores. This gas distributor is manufactured using a composite commercial material (carbon and graphite powders). The results show significant effects on the zone of diffusion in the PEMFC polarization curves, it is possible to reduce the mass transport limitations at high current density, however the ohmic losses zone on the polarization curves show an important electro-conductive limitation due to a deficient matrix.

Keywords: 

Polar plates, Flow Gas Distribution, Gas Diffusion Media, PEMFC Performance, Power.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors thanks at Alter Energias Grupo for partial financial support to this study. Also at Department of Chemistry of Cinvestav for materials and laboratory, and Professor Octavio Olivares Xómetl of Chemical Engineering Faculty, BUAP for Optical Microscopy.

  References

[1] Fuell Cell Hanbook EG&G Services, Parsons Inc. 5th Edition, USA, 2000.

[2] V.S. Bagotzky, N.V. Osetrova and A.M. Skundin, Russian Journal of Electrochemistry, 39, 919 (2003).

[3] P. Costamagna, S. Srinivasan, Journal of Power Sources, 102, 242 (2001).

[4] J. Larminie and A. Dicks, Fuel Cell Systems Explained. Ed. Wiley 2nd edition, 2003.

[5] Ton van der Does, Journal of Power Sources, 61, 49 (1996).

[6] D.L. Wood III, J.S. Yi and T.V. Nguyen, Electroquímica Acta, 43, 3795 (1998).

[7] P. Costamagna, S. Srinivasan, Journal of Power Sources, 102, 253 (2001).

[8] Ch.S. Kong, D-Y Kim, H-K Lee, Y-G Shul, T-H Lee, Journal of Power Sources, 4725, 1 (2002).

[9] C. Boyer, S. Gamburzev and A.J. Appleby, Journal of Applied Electrochemistry, 29 1095 (1999).

[10] K-H Choi, D-H Peck, Ch.S. Kim, D-R Shin, T-H Lee, Journal of Power Sources, 86, 197 (2000).

[11] J.J. Baschuk, Xianguo Li. Journal of Power Sources, 86 181 (2000).

[12] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez. Journal of Power Sources, 70, 55 (1998).

[13] D.R. Sena, E.A. Ticianelli, V.A. Paganin, E.R. Gonzalez, Journal of Electroanalytical Chemistry, 477, 164 (1999).

[14] S.A. Grigor’ev, Rusian Journal of Elecrochemistry, V 40, 11, 1188 (2004).

[15] Zhigang Qi. Journal of Power Sources, 109 469 (2002).

[16] S. Dutta, S. Shimpale and J.W. Van Zee, Journal of Applied Electrochemistry, 30, 135 (2000).

[17] Sandip Dutta, Srivatch Shimpale, J.W. Van Zee, International Journal of Heat and Mass Transfer, 44, 2029 (2001).

[18] Uwe Beuscher, Journal of the Electrochemical Society, 153, 9, A1788 (2006).

[19] M.S. Wilson, S. Gottesfeld, Journal of Applied Electrochemistry, 22, 1 (1992).

[20] Costamagna P., Srinivasan, S.J., Power Sources, 102, 242 (2001).

[21] Costamagna P., Srinivasan S.J. Power Sources, 102, 253 (2001).

[22] http://irh.uqtr.ca/utilisation/piles/piles-combustible.pd.

[23] Mosdale, R, “Etude et development d´une pile á combustible hydrogéne/oxygéne en technologie electrolyte polymére solide”. Grenoble, Thése INPG (1992).

[24] Budevski E.J. Optoelectronic and Advanced Materials 5, 1319 (2003).

[25] Antoine O. “Préparation et activité électrocatalique des nano-particules de platine dans les électrodes de piles á combustible á membrane échangeuse de protons”. Grenoble, Thése INPG (1998).

[26] Song, S.M., Koo, I.G., and Lee, W.M. Electrochim. Acta, 47, 2413 (2002).

[27] Lee, S., J. Mukerjee, S. Ticianelli and E.A. McBreen, J. Electrochim. Acta, 44, 3286 (1999).

[28] E. Antolini, R.R. Passos and E.A. Ticianelli, J. of Applied Electrochemistry, 32, 383 (2002).

[29] C. Moisés Bautista-Rodríguez, Araceli Rosas-Paleta, Andrés Rodríguez-Castellanos, J.Antonio Rivera-Márquez, Omar Solorza-Feria, J.Antonio Guevara-Garcia, J.Ignacio Castillo-Velázquez. International Journal of Electrochemical Science, 2, 820 (2007).

[30] K. Suárez-Alcántara, A. Rodríguez-Castellanos, S. Durón-Torres, O. Solorza-Feria, J. Power Sources, 171, 381 (2007).

[31] I.A. Maslii, N.P. Poddubnyi and A.Zh. Medvedev, Russian Journal of Electrochemistry, 40, 218 (2004).

[32] C. Moisés Bautista-Rodríguez, Araceli Rosas-Paleta, J.Antonio Rivera-Márquez, Omar Solorza-Feria. Int. J. Electrochem. Sci., 4, 43 (2009).

[33] C. Moisés Bautista-Rodríguez, Araceli Rosas-Paleta, J. Antonio Rivera-Márquez, Omar Solorza-Feria.` Int. J. Electrochem. Sci., 4, 60 (2009).