Tungsten Effect Over Co-hydrotalcite Catalysts to Produce Hydrogen from Bio-ethanol

Tungsten Effect Over Co-hydrotalcite Catalysts to Produce Hydrogen from Bio-ethanol

J.L. ContrerasM.A. Ortiz G.A. Fuentes R. Luna J. Salmones B. Zeifert L. Nuno A. Vazquez 

Universidad Autónoma Metropolitana-Azcapozalco Depto. de Energía, CBI, Av. Sn.Pablo 180 Col.Reynosa, Azcapotzalco C.P.02200 México D.F., México.

Universidad Autónoma Metropolitana-Iztapalapa, Depto. de IPH, CBI,México, D.F., México

Instituto Politécnico Nacional, ESIQIE,Unidad Prof. ALM, México, D. F., 07738, México

Instituto Mexicano del Petróleo, Eje Central 152, México, D.F.México.

Corresponding Author Email: 
jlcl@correo.azc.uam.mx
Page: 
253-259
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.167
Received: 
10 November 2009
| |
Accepted: 
4 February 2010
| | Citation
Abstract: 

A great stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H2 from ethanol in steam reforming was found. The catalysts were characterized by N2 physisorption (BET area), X-ray diffraction, Infrared ,Raman and UV-vis spectroscopies. Catalytic evaluations were performed in a fixed bed reactor using a water/ethanol mol ratio of 4, at 450°C, and the W concentration stud- ied was from 0.5 to 3 wt%. As W concentration increases, the intensity of crystalline reflections of the Co-hydrotalcite catalysts decreases. There were found porous with the shape of parallel layers with a monomodal mesoporous distribution. Superficial chemical groups as: -OH, H2O, Al-OH, Mg-OH, W-O-W and CO32- were found by infrared spectroscopy. Catalyst with low amounts of W (1%) showed both, the highest H2 production and the best catalytic stability. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were: H2, CO2, CH3CHO, CH4 and C2H4 and the catalysts did not produce CO.

Keywords: 

Hydrogen, Pt, WOx,Co-Hydrotalcite, Ethanol

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors acknowledge the financial support of the Universidad Autónoma Metropolitana-Azcapotzalco, Iztapalapa, the Instituto Politécnico Nacional and the Instituto Mexicano del Petróleo.

  References

[1] R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature, 418, 964 (2002).

[2] J. Llorca, N. Homs, J. Sales, J.L.G. Fierro and P. Ramírez de la Piscina, J. Catal., 222, 470 (2004).

[3] A. Aboudheir, A. Akande, R. Idem, A. Dalai, Int. J. of Hydrogen Energy, 31, 752 (2006).

[4] U.S. Ozkan and Kurt Koelling, Fuel Cell Grade Hydrogen Production from the Steam Reforming of Bio-Ethanol Over Co-based catalysts: An Investigation of Reaction Networks and Active Sites. Tesis, The Ohio State University (2005).

[5] M.A. Ortiz R., Hydrogen production from bio-ethanol using Co, Ni and Pt-hydrotalcite catalysts stabilized with WOx, Tesis UAM-Azcapotzalco, (2009).

[6] F. Trifiró, A. Vaccari in: A.G. Bein (Ed.), Comprehensive Supramolecular Chemistry, vol.7, Pergamon, New York, (1996) p.251.

[7] M.A. Ocaña Z., Síntesis de Hidrotalcitas y Materiales Derivados: Aplicaciones en Catálisis Básica. Ph.D. Thesis , Universidad Complutense de Madrid, (2005).

[8] J. Salmones, B. Zeifert, M.H. Garduño, J. Contreras L., D.R. Acosta, A. Romero S. and L.A. García, Catal. Today, 133, 886 (2008).

[9] F. Cavan, F. Trifiro, A. Vacari, Catal. Today, 11, 173 (1991).

[10] J.L.Contreras, G.A. Fuentes, J. Salmones, B. Zeifert, Stabilization of Supported Platinum/Gama-Alumina Catalysts by Addition of Tungsten, J. of Alloys and Compounds 483, 371 (2008).

[11] J.L. Contreras, J. Salmones, L.A. García, A. Ponce, B. Zeifert and G.A. Fuentes, Hydrogen production by etanol steam reforming over Co-hydrotalcites having basic sites. J. of New Materials for Electrochemical Systems 11, 109 (2008).

[12] M.N. Barroso, M.F. Gómez, L.A. Arrúa, M.C. Abello, Appl. Catal. A:General, 304, 116 (2006).

[13] J. Llorca, N. Homs, J. Sales, and P. Ramírez de la Piscina, J. Catal., 209, 306 (2002).

[14] S. Lowell, J.E. Shields, M.A. Thomas, and M. Thommes, Characterization of Porous Solid and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publischers, 2004.

[15] M. Arco, D. Carriazo, s. Gutiérrez, C. Martín and V. Rives, Inorg. Chem. 43, 375 (2004).

[16] I.O. Cruz, N.F.P. Ribeiro, D.A.G. Aranda, M.M.V.M. Souza, Catalysis Comm. 9, 2606 (2008).

[17] T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase, K. Takehira, Catal. Lett., 73, 8, 21 (2001).

[18] C. Resini, T. Montenari, L. Barattini, G. Ramis, G. Busca, S. Presto, P. Riani, R. Marazza, M. Sisani, F. Marmottini, U. Costantino, Appl. Catal.A: General, 355, 83 (2009).

[19] J.M. Stencel, “Raman Spectroscopy for Catalysis”, Van Nostrand Reinhold, New York (1990) 82-85.

[20] R.H. Busey and O.L. Keller Jr., J. Chem. Phys., 41, 215 (1964).

[21] A. Bartecki and Dembicka D., J. of Inorg. and Nuclear Chem., 29, 2907 (1967).

[22] J.L.Contreras and G.A. Fuentes, Studies in Surface Science and Catalysis, Vol. 101 Edit. B. Delmon and J.T. Yates, Elsevier (1996) 1195-1204.

[23] A. Iannibello, L. Villa, and S. Marengo, Gazzetta Chimica Italiana,109, 521 (1979).

[24] L. Salvati, L.E. Makovsky, J.M. Stencel, F.R. Brown, D.M. Hercules, J. Phys.Chem., 85, 3700 (1981).

[25] J.A. Horsley, I.E. Wach, J.M. Brown, G.H. Via, F.D. Hardcastle, J. Phys. Chem., (1987).

[26] W.P. Griffith and T.D. Wickins, J. Chem. Soc., A, 1087 (1966).

[27] J.R. Anderson and K.C. Pratt, Introdution to characterization and testing of catalysts, Academic Press, (1985), p.419-420.

[28] J. Llorca, N. Homs, P. Ramírez de la Piscina, J. of Catal., 227, 556 (2004).

[29] J.R. Rostrup-Nielsen, N. Hojlund in: J. Oudar, H. Wise (Eds.), Deactivation and Poisoning of Catalyst, Marcel Dekker, New York, Basel, 1985,p.57.

[30] J. Comas, F. Mariño, M. Laborde, N. Amadeo. Chem. Eng., J., 98, 61 (2004).

[31] A. Erdohelyi, J. Rasko, T. Kecskes, M. Toth, M. DömÖk, K. Baán, Catal. Today, (2006).

[32] J.M. Smith, Chemical Engineering Kinetics, Spanish Ed. P.36 (2001).

[33] J.L. Contreras, G.A. Fuentes. J. Salmones, B. Zeifert. Effect of the reduction temperature of Pt/WOx-Al2O3 catalysts upon n-heptane hydroconversion. Proceedings of the ISAHOF meeting, Ixtapa-Zihuatanejo, México, Jun.14-18 ,2009.