Development of a Photovoltaic Hydrogen and Hypochlorite Generator

Development of a Photovoltaic Hydrogen and Hypochlorite Generator

J.L. RodriguezE.D. Beltran Y. Meas R. Ortega G. Orozco 

Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C. Parque Sanfandila S/N, Pedro Escobedo, CP. 76703, Querétaro, México.

Page: 
245-251
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.166
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 January 2010
| Citation

OPEN ACCESS

Abstract: 

This study examines the combination of electrolytically producing hydrogen and hypochlorite using a photovoltaic module. Hydrogen can be used in a fuel cell to generate electricity and hypochlorite to purify drinking water. Therefore the integrated process may be operated economically because the products from both the anode and the cathode are valuable. The apparatus was designed and constructed so that the photovoltaic module was coupled to the hydrogen and hypochlorite generator. The apparatus could be operating in remote locations. The system characteristics, including the rate of hydrogen and hypochlorite generation and the current/voltage characteristics of both the PV module and the electrolysis cell, were measured and analyzed.

  References

[1] R. Wyrster, J. Schindler, Solar and wind energy couple with electrolysis and fuel cells, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Eds. W. Vielstich, A. Lamm, H. A. Gasteiger, NY: John Wiley & Sons, Vol. 3, 2003 p 62-64.

[2] J.R. Forney, Method and Apparatus for Generating Electricity and Potable Water, US Patent 6,279,321B1 (2001).

[3] E.A. Fleming, Apparatus and Method for Creating a Hydrogen Network Using Water Treatment Facilities, U.S. Patent 0084718 A1 (2007).

[4] E.A. Fleming, Apparatus and Method for Integrated Hypochlorite and Hydrogen Fuel Cell Production and Electrochemical Power Generation, U. S. Patent 2005/0211567 A1 (2005).

[5] L.G. Arriaga, W. Martinez, U. Cano, H. Blud, Direct coupling of a solar-hydrogen system in Mexico, Int. J. Hydrogen Energy 32, 2247 (2007).

[6] R.E. Clarke, S. Giddey, F.T. Ciacchi, S.P.S. Badwal, B. Paul, J. Andrews, Direct coupling of an electrolyser to a solar PV system for generating hydrogen, Int J Hydrogen Energy 34, 2531 (2009).

[7] T.L. Gibson, N.A. Kelly, Optimizing Photovoltaic-Electrolyzer Effciency, US 2007/0119718 A1 (2007).

[8] H.B. Beer, The invention and industrial development of metal anodes, J. Electrochem. Soc. 127, 303C (1980).

[9] F. Marken, The electrochemistry of halogens, in Encyclopedia of Electrochemistry, Eds. A.J. Bard and M. Stratmann, Wiley-VCH, Weinheim Vol. 7, Ch 9, 2006, pp 273-302.

[10] Accessed from (2006) http://eosweb.larc.nasa.gov.

[11] Accessed from (2006) http://www.sener.gob.mx.

[12] M. Tobajas Vazquez, Ingeniero Energía Solar Fotovoltaica, 2a Edition, Ceysa, Barcelona, Spain, 2005, p. 99-100.

[13] J.R. Ochoa Gómez. Electrosíntesis y Electrodiálisis, Fundamentos, aplicaciones tecnológicas y tendencias, Mc Graw-Hill, Madrid, Spain, 1996, pp 145.

[14] G. Del Signore, Sodium Hypochlorite Generator, GB Patent 2448475 (2008).

[15] Fuel Cell Today Industry Review 2009, Fuel cell: Emerging Markets, Platinum Metals Rev., 53, 104 (2009).