Preparation and Characterization of Hybrid Membranes based on Nafion® using Partially Sulfonated Inorganic Fillers

Preparation and Characterization of Hybrid Membranes based on Nafion® using Partially Sulfonated Inorganic Fillers

F.J. Fernandez-Carretero E. Riande C. del Río F. Sanchez J.L. Acosta V. Compan

Departamento de Termodinámica Aplicada. ETSII. Universidad Politécnica de Valencia. 46020, Valencia, Spain.

Instituto de Ciencia y Tecnología de polímeros (CSIC), 28006, Madrid, Spain.

Corresponding Author Email: 
vicommo@ter.upv.es
Page: 
83-93
|
DOI: 
https://doi.org/10.14447/jnmes.v13i2.174
Received: 
19 October 2009
|
Accepted: 
22 June 2010
|
Published: 
22 June 2010
| Citation

OPEN ACCESS

Abstract: 

This work reports the preparation and characterization of inorganic hybrid membranes cast from solutions of perflouorinated sulfocationic ionomers (Nafion® 117) containing 10 wt % dispersed inorganic fillers. Silica gel, SBA-15 and sepiolite, all of them partially functionalized with sulfonic acid groups, were used as fillers. Fillers slightly reduce the water uptake without altering the ion-exchange capacity of the membrane composites. FTIR and DMTA analysis techniques suggest that filler-polymer matrix interactions are stronger with sepiolite than with the other fillers. The fillers used enhance the mechanical properties of the membranes, but they negatively affect the thermal stability of the composites. The permeability coefficient of oxygen in Nafion® and Nafion®-sepolite membranes is similar, and it is slightly lower in the others. The conductivity of the hybrid membranes equilibrated with water, measured at 80o C by impedance spectroscopy, is 4.0, 6.0 and 6.3 S/m for the hybrid membranes containing functionalized Silica gel, SBA-15 and Sepiolite fillers, respectively, somewhat lower than that found for the Nafion® 117 membrane, 5.9 S/m, measured in the same conditions.

Keywords: 

Hybrid Nafion® membranes; Sepiolite, Proton conductivity, Oxygen Permeability, PEMFC.

1. Introduction
2. Experimental Part
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was supported by the Comunidad de Madrid (CAM) through the Program Interfaces (S-0505/MAT-0227), Fondo Europeo de Desarrollo Regional (F.E.D.E.R.) and Fondo Social Europeo (F.S.E.). Support by the Dirección General de Investigación Científica y Técnica (DGICYT), Grant MAT-2005-05648-C02-01, is gratefully acknowledged. Instituto de la Pequeña y Mediana Industria Valenciana (IMPIVA), Grant IMCOVA-2006/20, is gratefully acknowledged.

  References

[1] T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application. Cambridge: Royal Society of Chemistry, 2004.

[2] Li Qingfeng, He Ronghuan, Jensen J. O. and Bjerrum N. J., Chem. Mater.,15(26), 4896 (2003).

[3] G. Alberti, M. Casciola, Annu. Rev. Mater. Res., 33, 129 (2003).

[4] K. D. Kreuer, J. Membr. Sci., 185, 29 (2001).

[5] S. Yuyan, Y. Geping, W. Zhenbo, G. Yunzhi, J. Power Sources, 167, 235 (2007).

[6] G. Alberti, M. Casciola, Solid State Ionics, 145, 3 (2001).

[7] A.S. Aricò, P. Creti, P. L. Antonucci, V. Antonucci, Electrochem. Solid State Lett., 1, 4 (1998).

[8] Zoppi, R. A, Yoshida I. V. P, Nunes S. P, Hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution: Morphology and thermal analysis. Polymer, 39, 1309 (1998).

[9] G. Alberti, M. Casciola, L. Massinelli, B. Bauer, Journal of Membrane Science, 185, 73 (2001).

[10] B. Bonnet, D. J. Jones, J. Rozière, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio, E. Ramunni, J. New. Mater. Electrochem. Syst., 3, 87 (2000).

[11] Z.-G. Shao, H. Shu, M. Li, I.-M Hsing, Solid State Ionics, 177, 779 (2006).

[12] X. Zhu, H. Zhang, Y. Liang, X. Wang, B. Yi, J. Phys. Chem. B, 110, 14240 (2006).

[13] V. Ramani, H. R. Kunz, J. M. Fenton, J. Memb. Sci., 232, 31 (2004).

[14] U. H. Jung, K. T. Park, E. H. Park, S. H. Kim, J. Power Sources, 159, 529 (2006).

[15] Chalkova E., Pague M. B., Fedkin M. V., Wesolowski D. J., Lvova S. N., J. Electrochem. Soc., 152, A1035 (2005).

[16] E. Chalkova, M. V. Fedkin, S. Komarneni, S. N. Lvov, J. Electrochem. Soc., 154, B288 (2007).

[17] Q. Li, R. He, J. A. Gao, J. O. Jensen, N. J. Bjerrum, J. Electrochem. Soc., 150, A1599 (2003).

[18] A.S. Arico, V. Baglio, A. Di Blasi, V. Antonucci, Electrochem. Comm., 5, 862 (2003).

[19] H. L. Tang, M. Pan, J. Phys. Chem. C, 112, 11556 (2008).

[20] Z. G. Shao, P. Hoghee, I.-M. Hsing, J. Membr. Sci., 229, 43 (2006).

[21] F. J. Fernández-Carretero, V. Compañ, E. Riande, J. Power Sources, 173, 68 (2007).

[22] P. L. Antonucci, A. S. Aricò, P. Cretí, E. Ramunni, V. Antonucci, Sol. State Ionics, 125, 431 (1999).

[23] R. F. Silva, S. Passerini, A. Pozio, Electrochim. Acta, 50, 2639 (2005).

[24] S. Aiba, M. Ohashi, S. Huang, Ind. Ing. Chem. Fundam., 7, 497 (1968).

[25] V. Compañ, Mª L. López, A. Andrio, A. López-Alemany, M. F. Refojo, J. of Applied Polymer Sci., 72, 321 (1999).

[26] ISO International Standard 9913-1. Contact Lenses: Part 1: Determination of Oxygen Permeasbility and Transmissibility by the Fatt Method. In International Standards Organization, (ISO) ad. International Standard, Optics and Optical Instruments; Case Postale 56, CH-1211: Geneve, Switzerland, 1996; pp1-13.

[27] V. Compañ; J. Guzmán; E. Riande. membranes Biomaterials, 19, 2139 (1998).

[28] A. Mokrini, M. A. Huneault, J. Power Sources, 154, 51 (2006).

[29] R. Mohr, V. Kudela, J. Schauer, K. Richau, Desalination, 147, 191 (2002).

[30] S. Balci, J. of Chem. Tech. & Biotech., 66, 72 (1996).

[31] J. L. Valentin, M. A. Lopez-Manchado, A. Rodriguez, P. Posadas, L. Ibarra, App. Clay Sci., 36, 245 (2007).

[32] V. Di Noto, R. Gliubizzi, E. Negro, G. Pace, J. Phys. Chem. B, 110, 24972 (2006).

[33] Q. Deng, C. A. Wilkie, R. B. Moore, K. A. Mauritz, Polymer, 39, 5961 (1999).

[34] C. A. Wilkie, J. R. Thomsen, M. L. Mittleman, J. Appl. Pol. Sci., 42, 901 (1991).

[35] S. R. Samms, S. Wasmus, R. F. Savinell, J. Electrochem. Soc., 143, 1498 (1996).

[36] Q. Deng, R. B. Moore, K. A. Mauritz, J. Appl. Pol. Sci, 68, 747 (1998).

[37] G. Socrates. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004.

[38] C. del Rio, J. R. Jurado, J. L. Acosta, Polymer, 46, 3975 (2005).

[39] S. de Almeida, Y. Kawano, Journal of Thermal Analysis and Calorimetry, 58, 569 (1999).

[40] D. Stefanithis, K. A. Mauritz, Macromolecules, 23, 2397 (1990).

[41] H. R. Corti, F. Nores-Pondal, M. P. Buera, J. Power Sources, 161, 799 (2006).

[42] Ki-Yun Cho, Ho-Young Jung, Kyung A. Sung, Wan-Keun Kim, Shi-Joon Sung, Jung-Ki Park, Jong-Ho Choi, Yung-Eun Sung, J. Power Sources, 159, 524 (2006).

[43] B. Rodmacq, M. Pineri, J. M. D. Coey, A Meagher, J. Polym. Sci. Part B, Polym. Phys., 20, 603 (2003).

[44] Yeo Eisenberg, J. Appl. Polym. Sci., 21, 875 (2003).

[45] A. Page, K. M. Cable, R. B. Moore, Macromolecules, 38, 6472 (2005).

[46] Brandrup, E. H. Immerqut, E. A. Grulke, Eric A. Grulke, Abe Akihiro, D. Bloch, Polymer Handbook 4th edition: Wiley-Interscience, 1999.

[47] N. G. McCrum, J. Pol. Sci., 34, 355 (1959).

[48] J. Halim, F. N. Büchi, O. Haas, M. Stamm, G. G. Scherer, Electrochim. Acta, 39, 1303 (1994).