Preparation and Characterization of Hybrid Nafion/Silica and Nafion/Silica/PTA Membranes for Redox Flow Batteries

Preparation and Characterization of Hybrid Nafion/Silica and Nafion/Silica/PTA Membranes for Redox Flow Batteries

V. Glibin
V. Pupkevich
L. Svirko
D. Karamanev

Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9

Corresponding Author Email: 
vpupkevi@uwo.ca
Page: 
195-199
|
DOI: 
https://doi.org/10.14447/jnmes.v12i4.446
Received: 
June 06, 2008
| |
Accepted: 
January 12, 2009
| | Citation
Abstract: 

The present work was aimed at the development of a straight-forward method for a multicomponent membranes synthesis, as well as study of electrochemical and ion transport properties of the synthesized membranes. It was shown that introduction of silica and phosphotungstic acid (PTA) into a Nafion membrane composition slightly affects the membrane proton conductivity; however it results in a significant decrease of the ferric ion transfer through the membrane. The addition of PTA was found to result in an increase in the membrane permeability to ferric ions. The membranes converted into K+-form was showed to have a high stability to PTA leaching.

Keywords: 

composite membrane, silica, phosphotungstic acid, proton conductivity, ferric ions diffusion coefficient.

1. Introduction
2. Experimiental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] C. Ponce de Leon, A. Frias-Ferrer, J. Gonsalez-Garcia, D. A. Szanrto and F. C. Walsh, J. Power Sources, 160, 716 (2000).

[2] Flow Batteries: Technologies, Applications and Markets, Esco Vale Report # 5061.

[3] A. Price, S. Bartley, S. Male, G. Cooley, Power Eng. Journal, 6, 120 (1999).

[4] M. Bartolozzi, J. Power Sources, 27, 219 (1989).

[5] C.-H. Bae, E. P. L. Roberts, R. A. W. Dryfe, Electrochimica Acta, 48, 279 (2002).

[6] S. C. Chieng, M. Kazacos, M. Skyllas-Kazacos, J. Power Sources, 39, 11 (1992).

[7] Z. Ogumi, Y. Uchimoto, M. Tsujikawa, Z. Takehara, F. R. Foulkes, J. Electrochem. Soc., 137, 5, 1430 (1990).

[8] T. Mohammadi, M. Skyllas-Kazacos, J. Appl. Electrochem., 27, 153 (1996).

[9] H. Tian, O. Savadogo, Fuel Cells, 5, 3, 375 (2005).

[10]V. Ramani, H. R. Kunz, J. M. Fenton, J. Membr. Sci., 232, 31 (2004).

[11]V. Ramani, H. R. Kunz, J. M. Fenton, J. Membr. Sci., 279, 506 (2006).

[12]J. Xi, Z. Wu, X. Qiu, L. Chen, J. Power Sources, 166, 531 (2007).

[13]W. Xu, T. Lu, C. Liu, W. Xing, Electrochimica Acta, 50, 3280 (2005).

[14]P. Dimitrova, K. A. Friedrich, V. Vogt, U. Stimming, J. Electroanal. Chem., 532, 75 (2002).

[15]R. Jiang, H. R. Kunz, J. M. Fenton, J. Membr. Sci., 272, 116 (2006).

[16]S. Ren, G. Sun, C. Li, Zh. Liang, Zh. Wu, W. Jin, X. Qin, X. Yang, Fuel Cells Bulletin, 12, 12 (2006).

[17]D. Karamanev, PCT Int. Appl. # WO 2005001981 (2005).

[18]V. Pupkevich, V. Glibin, D. Karamanev, J. Solid State Electrochem., 11, 1924 (2007).

[19]E. Wiedemann, A. Heintz, R. N. Lichtenthaler, J. Membr. Sci., 141, 215 (1998).

[20]K.-L. Huang, T. M. Holsen, J. R. Selman, J. Membr. Sci., 221, 135 (2003).

[21]D. G. Karamanev, L. N. Nikolov, V. Mamatarkova, Minerals Eng., 15, 5, 341 (2002).

[22]L. S. de A. Prado, M. L. Ponce, S. S. Funari, K. Schulte, V. M. Garamus, R. Willumeit, S. P. Nunes, J. Non-Crystal. Solids, 351, 2194 (2005).

[23]A. Gruger, A. Regis, T. Schmatko, P. Colomban, Vibrational Spectroscopy, 26, 215 (2001).

[24]U. Lavrencic Staangar, N. Groselj, B. Orel, A. Schmitz, Ph. Colomban, Solid State Ionics, 145, 109 (2001).

[25]H. Ratajczak, A. J. Barnes, A. Bielanski, H. D. Lutz, A. Muller, in “Polyoxometalate Chemistry from Topology via Self-Assembly to Applications”, Ed., M. T. Pope, A. Muller, KLUWER ACADEMIC PUBLISHERS, Dordrecht, Netherlands, 2001, p.101.

[26]M. Lavorgna, L. Mascia, G. Mensitieri, M. Gilbert, G. Scherillo, B. Palomba, J. Membr. Sci., 294, 159 (2007). [27]J. Ye, Ber. Bunseges. Phys. Chem., 92, 1271 (1988).