Fault detection and isolation for industrial risk prevention

Fault detection and isolation for industrial risk prevention

Nelly Olivier-Maget Gilles Hetreux 

Laboratoire de Génie Chimique, UMR-5503 (INPT/CNRS/UPS) 4, Allée Emile Monso, BP 84234 F-31432 Toulouse, France

Corresponding Author Email: 
nelly.olivier@ensiacet.fr, gilles.hetreux@ensiacet.fr
Page: 
537-557
|
DOI: 
https://doi.org/10.3166/JESA.49.537-557
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

The main tool for the development of hazardous chemical syntheses remains the batch reactor. Nevertheless, even if it offers the required flexibility and versatility, this reactor presents technological limitations. In particular, poor transfer of the heat generated by exothermic chemical reactions is a serious problem with regard to safety. In this context, a simple failure is considered as prejudicial. So, fault detection and diagnosis are studied with a particular attention in the scientific and industrial community. This work presents a fault detection and isolation methodology. The developed methodology rests on a mixed approach which combines a model-based method for the fault detection and a pattern matching approach for the identification. It is integrated within a hybrid dynamic simulator. In this paper, the approach is tested during the operation of an exothermic reaction. 

Keywords: 

fault detection and isolation, extended Kalman filter, dynamic hybrid simulation, model based method, risk assessment

1. Introduction
2. Exothermic chemical reaction
3. Fault detection and isolation methodology
4. Results
5. Conclusion
  References

Anderson T.W. (1984). An introduction to multivariate statistical analysis, New York, Wiley.

Banerjee S., Jana A. K. (2014). High gain observer based extended generic model control with application to a reactive distillation column, Journal of Process Control, 24(4), p. 235-248.

Benaissa W., Gabas N., Cabassud M., Carson D., Elgue S., Demissy M. (2008). Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics, Journal of Loss Prevention in the Process Industries, 21(5), p. 528-536.

Benkouider A.M., Kessas R., Yahiaoui A., Buvat J.C., Guella S. (2012). A hybrid approach to faults detection and diagnosis in batch and semi-batch reactors by using EKF and neural network classifier, Journal of Loss Prevention in the Process Industries, 25(4), p. 694-702.

Biagiola S.I., Figueroa J.L. (2004). A high gain nonlinear observer: application to the control of an unstable nonlinear process, Computers & Chemical Engineering, 28, p. 1881-1898.

Chang C.T., Chen C.Y. (2011). Fault diagnosis with automata generated languages, Computers and Chemical Engineering, 35, p. 329-341.

Chetouani Y., Mouhab N., Cosmao J.M. and Estel L. (2003). Dynamic model-based technique for detecting faults in a chemical reaction, Process Safety Progress, 22(3), p. 183-190.

Chetouani Y. (2004). Fault detection by using the innovation signal: application to an exothermic reaction, Chemical Engineering and Processing, 43, p. 1579-1585.

Chiappetta G., Clarizia G. and Drioli E. (2006). Analysis of safety aspects in a membrane reactor, Desalination, 193 (1–3), p. 267-279.

Chow E.Y. and Willsky A.S. (1984). Analytical redundancy and the design of robust failure detection systems, IEEE Transactions on Automatic Control, 29(7), p. 603-614.

De Kleer J. and Williams B.C. (1987). Diagnosing multiple faults, Artificial Intelligence, 32, p. 97-130.

Di Miceli Raimondi N., Olivier-Maget N., Gabas N., Cabassud M., Gourdon C. (2015). Safety enhancement by transposition of the nitration of toluene from semi-batch reactor to continuous intensified heat exchanger, Chemical Engineering Research and Design, 94, p. 182-193.

Ding S.X. (2014). Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results, Journal of Process Control, 24(2), p. 431-449.

Einicke G.A., White L.B. (1999). Robust Extended Kalman Filtering, IEEE Trans. Signal Process., 47(9), p. 2596-2599.

Eizenberg S., Shachama M. and Brauner N. (2006). Combining HAZOP with dynamic simulation - Applications for safety education, Journal of Loss Prevention in the Process Industries, 19(6), p. 754-761.

Evensen G. (2003). The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation, Ocean Dynamics, 53, p. 343-360.

Farza M., M’Saad M., Rossignol L. (2004). Observer design for a class of MIMO nonlinear systems, Automatica, 40, p. 135-143.

Frank P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy – a survey and some new results, Automatica, 26, p. 459-474.

Freeman R.A., Lee R., McNamara T.P. (1992). Plan HAZOP studies with an expert system, Chemical Engineering Progress, p. 28-32.

Gertler J. and Singer D. (1990). A new structural framework for parity equation-based failure detection and isolation, Automatica, 26, p.381-388.

Grau M.D., Nouguès J.M. and Puigjaner L. (2000). Batch and semibatch reactor performance for an exothermic reaction, Chemical Engineering and Processing, 39, p. 141-148.

Gundale Mangesh M., Jana A.K. (2008). A comparison of three sets of DSP algorithms for monitoring the production of ethanol in a fed-batch baker's yeast fermenter, Measurement, 41, p. 970-985.

Gygax R. (1988). Chemical reaction engineering for safety, Chemical reaction engineering for safety, Chemical Engineering Science, 43(8), p. 1759-1771.

Hétreux G., Théry R., Olivier-Maget N., Le Lann J.M. (2007). Exploitation de la simulation dynamique hybride pour la conduite de procédés semi-continus, Journal Européen des Systèmes Automatisés, 41(5), p. 585-616.

Jazwinski A.H.. (1970). Stochastic Processes and Filtering Theory, Libri, p. 376.

Li R., Corripio A.B., Henson M.A., Kurtz M.J. (2004). On-line state and parameter estimation of EPDM polymerization reactors using a hierarchical extended Kalman filter, Journal of Process Control, 14, p. 837-852.

Lo S.N. and Cholette A. (1972). Experimental study on the optimum performance of an adiabatic MT reactor, The Canadian Journal of Chemical Engineering, 50, p. 71-80.

Lou H.H., Chandrasekaran J., Smith R.A. (2006). Large-scale dynamic simulation for security assessment of an ethylene oxide manufacturing process, Computers and Chemical Engineering, 30, p. 1102-1118.

Maget V. (2007). Développement et comparaison de méthodes d’assimilation de données appliqués à la restitution de la dynamique des ceintures de radiation de la Terre. PhD-Thèse, université de Toulouse (École Nationale Supérieure de l’Aéronautique et de l’Espace), France, p. 223.

Marhavilas P.K., Koulouriotis D., Gemeni V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000-2009, Journal of Loss Prevention in the Process Industries, 24(5), p. 477-523.

Mehra R.K. andPeschon J. (1971). An Introduction approach to fault detection and diagnosis in dynamic systems, Automatica, 5, p. 637-640.

Mezouar A., Fellah M.K., Hadjeri S. (2008). Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach, Simulation Modelling Practice and Theory, 16, p. 1323-1336.

Olivier B., Huang I., Craig K. (2012). Dual particle filters for state and parameter estimation with application to a run-of-mine ore mill, Journal of Process Control, 22, p. 710-717.

Olivier-Maget N. (2007). Surveillance des Systèmes Dynamiques Hybrides : Application aux procédés, PhD Thesis of the Toulouse University (INSA).

Olivier-Maget N., Hétreux G., Le Lann J.M. and Le Lann M.V. (2008). Integration of a failure monitoring within a hybrid dynamic simulation environment, Chemical Engineering and Processing, 47(11), p.1942-1952.

Olivier-Maget N., Hétreux G., Le Lann J.M. and Le Lann M.V. (2009a). Model-Based Fault Diagnosis Using a Hybrid Dynamic Simulator: Application to a Chemical Process, Computer Aided Chemical Engineering, 27, p. 1641-1646.

Olivier-Maget N., Hétreux G., Le Lann J.M. and Le Lann M.V. (2009b). Fault Detection and Diagnosis Based on a Hybrid Dynamic Simulator, published in The 7th IFAC International Symposium on Fault Detection, Supervision and Safety of Technical Processes, Spain, p. 223-228.

Perret J., Hétreux G. and Le Lann J.M. (2004). Integration of an object formalism within a hybrid dynamic simulation environment, Control Engineering Practice, 12(10), p. 1211-1223.

Prat L., Devatine A., Cognet P., Cabassud M., Gourdon C., Elgue S. and Chopard F. (2005). Performance Evaluation of a Novel Concept “Open Plate Reactor” Applied to Highly Exothermic Reaction, Chemical Engineering Technology, 28(9), p. 1028-1034.

Qu C.C., Hahn J. (2009). Process monitoring and parameter estimation via unscented Kalman filtering, Journal of Loss Prevention in Process Industries, 22, p. 703-709.

Rawlings J.B., Bakshi B.R. (2006). Particle filtering and moving horizon estimation, Computers & Chemical Engineering, 30, p. 1529-1541.

Reif K., Unbehauen R. (1999). The extended Kalman filter as an exponential observer for nonlinear systems, IEEE Trans. Signal Process., 47(8), p. 2324-2328.

Ruiz D., Canton J., Nougues J.M., Espuna A., Puigjaner L. (2001). On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants, Computers and Chemical Engineering, 25 (4–6), p. 829-837.

Salahshour K., Mosallaei M., Bayat M. (2008). Centralized and decentralized process and sensor fault monitoring using data fusion based on adaptive Extended Kalman Filter algorithm, Measurement, 41, p. 1059-1076.

Simani S. and Fantuzzi C. (2006). Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype, Mechatronics, 16, p. 341-363.

Shih R. and Lee L. (1995). Use of fuzzy cause-effect digraph for resolution fault diagnosis for process plants, Industrial and Engineering Chemistry Research, 34(5), p. 1688-1717.

Shapiro S. S. and Wilk M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, 52 (3-4), p. 591-611.

Stoessel F. (2008). Thermal safety of chemical processes, Risk assessment and Process Design, Wiley-VCH, p. 374.

Svandova Z., Jelemensky L., Markos J., Molnar A. (2005). Steady states analysis and dynamic simulation as a complement in the HAZOP study of chemical reactors, Process Safety and Environmental Protection, 83 (B5), p. 463-471.

Venkatasubramanian V., Rengaswamy R., Yin K. and Kavuri S. N. (2003). A review of process fault detection and diagnosis, Computers & Chemical Engineering, 27, p. 293-346.

Welch G. and Bishop G. (1995). An introduction to the Kalman filter, Technical Report TR 95-041, University of North Carolina.

Willsky A.S. (1976). A survey of design methods for failure detection in dynamic systems, Automatica, 12, p. 601-611.

Xaumier F., Le Lann M.V., Cabassud M. and Casamatta G. (2002). Experimental application of nonlinear model predictive control: temperature control of an industrial semi-batch pilot-plant reactor, Journal of Process Control, 12(6), p. 687-693.

Zeitz M. (1987). The extended Luenberger observer for nonlinear systems, System & Control Letters, 9, p. 149-156.