A reliability evaluation of the Moroccan level crossing system using fault tree modelling and importance measures

A reliability evaluation of the Moroccan level crossing system using fault tree modelling and importance measures

Jaouad Boudnaya Abdelhak Mkhida Mohamed Sallak 

Laboratory of Mechanics, Mechatronics and Control (L2MC) ENSAM Meknes, Moulay Ismail University , Marjane 2, PO Box 15290 Al-Mansour Road Agouray, 50500 Meknes, Morocco

Sorbonnes universités, Université de Technologie de Compiègne Heudiasyc laboratory CNRS UMR 7253, Research Center of Royallieu 60200 Compiegne, France

Corresponding Author Email: 
j.boudnaya@gmail.com, abdelhak.mkhida@gmail.com; sallakmo@utc.fr
Page: 
487-502
|
DOI: 
https://doi.org/10.3166/JESA.49.487-502
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

In this paper, we model the Feared Event (Collision between train and vehicle) of the Moroccan level crossing system using Fault Trees, in order to evaluate the unreliability of the system and to identify the critical components. First, a fault tree analysis to evaluate the system unreliability over the time is proposed. The human factors and components failure rates are taken into account. Then, an importance measures study is proposed to identify the critical components in the level crossing system.

Keywords: 

railway signalling system, level crossing, minimal cuts, fault tree, importance measures.

1. Introduction
2. The levels crossing in Morocco
3. Fault tree analysis
4. Study of the human factor
5. Importance measures of basic events of fault tree
6. Case study
7. Conclusion
Acknowledgments

First, we thank the ONCF as well as the Centre of Doctoral Studies of ENSAM MEKNES. Many thanks go to our colleagues and experts for the source of information and advice they gave us. We also thank obviously the International Conference of Modelling and Simulation (MOSIM'14) as well as the European journal of automated systems (JESA), to allow us to communicate and to publish our research and to share our conclusions with colleagues. This work was supported by the French National Research Agency, ANR-13-JS03-0007 RECIF

  References

Bahloul K., Defossez F., Ghazel M., & Simon C.-d. (2012). Adding technological solutions for safety improvement at level crossings: a functional specification. Procedia - Social and Behavioral Sciences, 1375-1384.

Birnbaum Z. W. (1969). On the Importance of Different Components in a Multi-Component System. Academic Press.

Bouchiba A. (2013). Evaluation de Dysfonctionnement d'un Systeme par Approche Bayésienne : Cas du Systeme Ferroviaire. PhD thesis, Ecole doctorale d’Angers, France. Eole doctorale d'EMI Rabat Maroc.

Brissaud F., Lanternier B., Charpentier D., & Lyo P. (2007). Modélisation des Taux de Défaillance en Mécanique: Combinaison d’une loi de Weibull et d’un Modèle de Coxpour la Modélisation des Taux de Défaillance en fonction du temps et des Facteurs d'influence. 3e congrès PENTOM.

Cabau E. (1999). Introduction à la conception de la sûreté. Cahier technique n° 144, Schneider électrique.

Collart D. S., Defossez F., & Bon P. (2006). Safety requirements and p-time petri nets: A level crossing case study. IMACS Multiconference on « Computational Engineering in Systems Applications »(CESA). Beijing, China.

Ghazel M. (2009). Using Stochastic Petri Nets for Level-Crossing Collision Risk. IEEE Transactions On Intelligent Transportation Systems, Vol. 10, No. 4.

Houasnia T. (1999). Pondération des Taux de Défaillances des Équipements qui opèrent dans des Milieux Hostiles. Université du Québec.

Joe S., & Clive R. (2010). Using functional analysis to determine the requirements for changes to critical systems : Railway levelc rossing case study. Reliability Engineering and System Safety 95, 216-225.

M.EASA S. (1994). Reliability-Based design of sight distance at railroad grade crossings. Transp.Res.-A. vol. 28 A, n°1, 1-15.

Magne L., & Vasseur D. (2006). Risques industriels - complexité, incertitudes et décision : une approche interdisciplinaire. Lavoisier.

North-Holland. (1986). Information processing and human-machine interaction: An approach to cognitive engineering. New-York.

ONCF (2013). Sécurisation de la traversée des voies ferrées au droit des passages à niveau : équipement des passages a niveau non gardés par système automatique d’annonce et de protection. Fiche projet, Rabat.

Paul M. S., Michael G. L., Kristie L. Y., & Guy H. W. (2013). An on-road network analysis-based approach to studying driver situation awareness at rail level crossings. Accident Analysis and Prevention 58, 195-205.

Rizati H., Siti Z. I., & b, I. R. (2014). Pedestrian Crossing Scenario Model Using Petri Nets. Procedia. Social and Behavioral Sciences 129, 406-413.

Samantha G. C., Nanyan Z., & Mohd, R. (2014). Highway-rail grade crossing safety challenges for shared operations of high-speed passenger and heavy freight rail in the U.S. Safety Science 68, 128-137.

Swain A-D., & G. H.-E. (1983). Handbook on human reliability analysis with emphasis on nuclear power plant application. Tech. Report NUREG/CR-1278, USNRC.