Resilience study of inland navigation networks in drought period

Resilience study of inland navigation networks in drought period

Klaudia Horváth Houda Nouasse Lala Rajaoarisoa Eric Duviella Karine Chuquet 

Deltares - TU Delft, Faculty of Civil Engineering and Geosciences,

Department of Water management Delft, The Netherlands

Mines Douai, URIA, France

VNF, DT Nord-Pas de Calais, SEME, PARME Hydro, France

Corresponding Author Email: 
hklau85@gmail.com, houda.nouasse@mines-douai.fr, lala.rajaoarisoa@mines-douai.fr, eric.duviella@mines-douai.fr, karine.chuquet@vnf .fr
Page: 
299-323
|
DOI: 
https://doi.org/10.3166/JESA.49.299-323
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

It is expected that the global change will have impacts on the rivers, channels and inland navigation networks. These forecasts result from studies of several research laboratories in Europe. Generally, it consists in coupling climate scenarios to hydrological models in order to forecast the water resource state by considering future horizons of several years. This step is relevant only if climate scenario and hydrological models are available. Also, it requires methods dedicated to the reduction of the uncertainties. Otherwise, the resilience study of the inland navigation networks against climate change can be done by designing an integrated model that reproduces their dynamics. This integrated model is able to take into account the influence of watersheds and groundwater. It is based on the daily water volume balance that supply and empty the networks. It allows determining the boundary conditions for the good operation of the inland navigation networks during drought periods. The proposed integrated model is illustrated by considering the inland navigation network of the north of France. 

Keywords: 

modeling, large scale systems, global change, water management, inland navigation network.

1. Introduction
2. Etude de la résilience des voies navigables
3. Modèle intégré de réseaux de voies navigables
4. Modèle intégré du réseau Cuinchy-Fontinettes
5. Conclusion et perspectives
Remerciements

Ce travail est une contribution au projet GEPET’Eau financé dans le cadre du programme GICC du MEDDE, avec la participation de l’ORNERC et de la DGITM. https://gepeteau.wordpress.com/

  References

Arkell B., Darch G. (2006). Impact of climate change on london’s transport network. Proceedings of the ICE - Municipal Engineer, vol. 159, p. 231-237.

Associates I. W., House C., Lane S., Beckwithshaw, HARROGATE, HG3 et al. (2008). Report for the inland waterways advisory council information and communication technology for the uk’s inland waterways. Technical report, July.

Bates B., Kundzewicz Z., Wu S., Palutikof J. (2008). Climate change and water. Technical repport, Intergovernmental Panel on Climate Change, Geneva.

Baume J.-P., Malaterre P.-O., Vion P.-Y. (2003). Simulation of irrigation canals. Theoretical Concepts Modeling Approach, vol. II.

Boé J., Terray L., Martin E., Habetsi F. (2009). Projected changes in components of the hydrological cycle in french river basins during the 21st century. Water Resources Research, vol. 45.

Bos M. (1976). Discharge measurement structures. Publication (International Institute for Land Reclamation and Improvement).

Brand C., Tran M., Anable J. (2012). The uk transport carbon model: An integrated life cycle approach to explore low carbon futures. Energy Policy, vol. 41, p. 107-124.

Bugarski V., Backalic T., Kuzmanov U. (2013). Fuzzy decision support system for ship lock control. Expert Systems with Applications, vol. 40, p. 3953-3960.

Ducharne A., Habets F., Pagé C., Sauquet E., Viennot P., Déqué M. et al. (2010). Climate change impacts on water resources and hydrological extremes in northern france. XVIII Conference on Computational Methods in Water Resources, June, Barcelona, Spain.

EnviCom. (2008). Climate change and navigation - waterborne transport, ports and waterways: A review of climate change drivers, impacts, responses and mitigation. EnviCom - Task Group 3 .

Feller W. (1971). An introduction to probability theory and its applications. Wiley series in probability and mathematical statistics: Probability and mathematical statistics.

Frigo A. L., Bleninger T. B. (2015). A review of the navigability modeling for inland waterways. E-proceedings of the 36th IAHR World Congress 28 June - 3 July, The Hague, the Netherlands.

Hao Z., Singh V. P. (2015). Drought characterization from a multivariate perspective: A review. Journal of Hydrology, vol. 527, p. 668-678.

Horvath K., Duviella E., Rajaoarisoa L., Chuquet K. (2014). Modelling of a navigation reach with unknown inputs: the cuinchy-fontinettes case study. Simhydro, Sofia Antipolis, 11-13 June.

Horvath K., Petrecsky M., Rajaoarisoa L., Duviella E., Chuquet K. (2014). Mpc of water level in a navigation canal - the cuinchy-fontinettes case study. European Control Conference, Strasbourg, France, June 24-27 .

IPCC. (2014). Climate change 2014. The Core Writing Team, R. K. Pachauri and L. Meyer, Synthesis Report, https : //www.ipcc.ch/pdf/assessment−report/ar5/syr/SY R_AR5_FINAL_full.pdf.

IWAC. (2009). Climate change mitigation and adaptation. implications for inland waterways in england and wales.

LePocher O., Duviella E., Bako L., Chuquet K. (2012). Sensor fault detection of a real undershot/overshot gate based on physical and nonlinear black-box models. Safeprocess’12, Mexico, Mexico, 29-31 August.

Lerat J. (2009). Quels apports hydrologiques pour les modèles hydrauliques? vers un modèle intégré de simulation des crues. PhD thesis, Université Pierre et Marie Curie/Cemagref .

Li Y., Huang H., Ju H., Lin E., Xiong W., Han X. et al. (2015). Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the rcp 8.5 scenario in the huang-huai-hai plain. Agriculture, Ecosystems & Environment. 

Malaterre P. O., Chateau C. (2007). Scada interface of the sic software for easy real time application of advanced regulation algorithms. second Conference on SCADA and Related Technologies for Irrigation System Modernization - A USCID Water Management Conference, Denver, Colorado, June 6-9 .

Mallidis I., Dekker R., Vlachos D. (2012). The impact of greening on supply chain design and cost: a case for a developing region. Journal of Transport Geography, vol. 22, p. 118-128.

Mihic S., Golusin M., Mihajlovic M. (1993). Policy and promotion of sustainable inland waterway transport in europe - danube river. Renewable and Sustainable Energy Reviews, vol. 15, p. 1801-1809.

Munier S. (2009). Modélisation intégrée des écoulements pour la gestion en temps réel d’un basin versant anthropisé. PhD thesis, AgroParisTech/Cemagref .

Park C.-K., Byun H.-R., Deo R., Lee B.-R. (2015). Drought prediction till 2100 under {RCP} 8.5 climate change scenarios for korea. Journal of Hydrology, vol. 526, p. 221-230.

Payan J. (2007). Prise en compte de barrages-réservoirs dans un modèle global pluie-débit. PhD thesis, AgroParisTech/Cemagref .

Perrin C. (2000). Vers une amélioration d’un modèle global pluie-débit au travers d’une approche comparative. PhD thesis, INPG/Cemagref .

Sepúlveda C., Gómez M., Rodellar J. (2009). Benchmark of discharge calibration methods for submerged sluice gates. Journal of Irrigation and Drainage Engineering, vol. 135, p. 676-682.

Wanders N., Wada Y. (2015). Human and climate impacts on the 21st century hydrological drought. Journal of Hydrology, vol. 526, p. 208-220.

Wang S., Kang S., Zhang L., Li F. (2007). Modelling hydrological response to different land-use and climate change scenarios in the zamu river basin of northwest china. Hydrological Processes, vol. 22, p. 2502-2510.