Potential Demand for New High Speed Rail Services in High Dense Air Transport Corridors

Potential Demand for New High Speed Rail Services in High Dense Air Transport Corridors

C. Román J.C. Martín

Departamento De Análisis Económico Aplicado, Universidad De Las Palmas De Gran Canaria, 35017 Las Palmas G.C., Spain

| |
| | Citation



Demand analysis is a key element in the evaluation of public policies. The ex ante evaluation of large scale projects involving for example new high speed rail (HSR) services requires the estimation of reliable choice models to predict ridership shares of the new alternatives and to identify the main sources for traffic diversion and traffic generation. This paper analyses and forecasts potential demand for HSR services in the high dense air transport route: the line Madrid–Barcelona. The model aims to explain changes in the demand for interurban rail and air transport as a result of substantial improvements in the level of service due to the introduction of the HSR. Results highlight that the expected volume of demand for the HSR in the corridor is not enough to guarantee a positive social benefit of this project.


discrete choice modeling, intermodal competition stated preference, mixed RP/SP data


[1] Laird, J.J., Nellthorp, J. & Mackie, P.J., Network effects and total economic impact in transport appraisal. Transport Policy, 12, pp. 537–544, 2005. doi:10.1016/j.tranpol.2005.07.003

[2] Martin, F., Justifying a high-speed rail project: social value vs. regional growth. The Annals of Regional Science, 31, pp. 155–174, 1997. doi:10.1007/s001680050043

[3] Nash, C.A., The case for high speed rail, Institute for Transport Studies, The University of Leeds Working Paper 323, Leeds, 1991.

[4] Sichelschmidt, H., The EU programme “trans-European networks” – critical assessment. Transport Policy, 6, pp. 169–181, 1999. doi:10.1016/S0967-070X(99)00018-9

[5] Short, J. & Kopp, A., Transport infrastructure: investment and planning. Policy and research aspects. Transport Policy, 12, pp. 360–367, 2005. doi:10.1016/j.tranpol.2005.04.003

[6] Van Exel, J., Rienstra, S., Gommers, M., Pearman, A. & Tsamboulas, D., EU involvement in TEN development: network effects and European value added. Transport Policy, 9, pp. 299–311, 2002. doi:10.1016/S0967-070X(02)00016-1

[7] Vickerman, R.W., High-speed rail in Europe: experience and issues for future development. The Annals of Regional Science, 31, pp. 21–38, 1997. doi:10.1007/s001680050037

[8] de Rus, G. & Inglada, V., Análisis coste-beneficio del tren de alta velocidad en España. Revista de Economía Aplicada, 3, pp. 27–48, 1993.

[9] de Rus, G. & Inglada, V., Cost-benefit analysis of the high-speed train in Spain. The Annals of Regional Science, 31, pp. 175–188, 1997. doi:10.1007/s001680050044

[10] Levinson, D., Mathieu, J.M., Gillen, D. & Kanafani, A., The full cost of high speed rail: an engineering approach. The Annals of Regional Science, 31, pp. 189–215, 1997. doi:10.1007/ s001680050045

[11] de Rus, G. & Román, C., Análisis económico de la línea de alta velocidad Madrid-Barcelona. Revista de Economía Aplicada, 42, pp. 35–80, 2006.

[12] Steer Davies Gleave. High Speed Rail: International Comparisons, Commission for Integrated Transport: London, 2004.

[13] Atkins, High-speed Line Study, Department of Environment, Transport and the Regions:London, 2004.

[14] de Rus, G. & Nombela, G., Is the investment in high speed rail socially profitable? Documento de trabajo EIT, Universidad de Las Palmas, 2004.

[15] Martín, J.C. & Nombela, G., Microeconomic impacts of investments in high speed trains in Spain. The Annals of Regional Science, 41, pp. 715–733, 2007. doi:10.1007/s00168-007-0116-8

[16] Haynes, K.E. & Karlsson, C., Introduction to the special issue: the regional and urban effects of high-speed trains. The Annals of Regional Science, 31, pp. 1–20, 1997. doi:10.1007/s001680050036

[17] Haynes, K.E., Labor markets and regional transportation improvements: the case of highspeed trains: an introduction and review. The Annals of Regional Science, 31, pp. 57–76, 1997. doi:10.1007/s001680050039

[18] Plassard, F., High speed transport and regional development. European Conference of Ministersof Transport (eds) Regional Policy Transport Network. OECD, Paris, 1994.

[19] Vickerman, R.W., The regional impacts of Trans-European networks. The Annals of Regional Science, 29, pp. 237–254, 1995. doi:10.1007/BF01581809

[20] Fröidh, O., Market effects of regional high-speed trains on the Svealand line. Journal of Transport Geography, 13(4), pp. 352–361, 2005.

[21] Gutiérrez, J., González, R. & Gómez, G., The European high-speed train network: predicted effects on accessibility patterns. Journal of Transport Geography, 4(4), pp. 227–238, 1996. doi:10.1016/S0966-6923(96)00033-6

[22] Gutiérrez, J., Location, economic potential and daily accessibility: an analysis of the accessibility impact of the high-speed line. Journal of Transport Geography, 9, pp. 229–242, 2001. doi:10.1016/S0966-6923(01)00017-5

[23] Martín, J.C., Gutiérrez, J. & Román, C., Data Envelopment Analysis (DEA ) index to measure the accessibility impacts of new infrastructure investments: the case of the high-speed train corridor Madrid-Barcelona-French border. Regional Studies, 38(6), pp. 697–712, 2004. doi:10.1080/003434042000240987

[24] Vickerman, R.W., Spiekermann, K. & Wegener, M., Accessibility and economic development in Europe, Regional Studies, 33(1), pp. 1–15, 1999. doi:10.1080/00343409950118878

[25] Combes, P.P & Linnemer, L., Intermodal competition and regional inequalities. Regional Science and Urban Economics, 30, pp. 131–184, 2000.

[26] Koppelman, F.S. & Wen, C.H., Nested logit models: which are you using? Transportation Research Record, 1645, pp. 1–7, 1998. doi:10.3141/1645-01

[27] Bhat, C.R., Accommodating variations in responsiveness to level-of-service measures in travel mode choice modelling. Transportation Research Part A, 32(7), pp. 495–507, 1998. doi:10.1016/S0965-8564(98)00011-1

[28] KPMG Peat Marwick in association with ICF Kaiser Engineers, Inc., Midwest System Sciences, Resource Systems Group, Comsis Corporation and Transportation Consulting Group. Florida High Speed and Intercity Rail Market and Ridership Study: Final Report, Submitted to Florida Department of Transportation, 1993.

[29] Hensher, D.A., A practical approach to identifying the market potential for high speed rail: a case study in the Sydney-Canberra corridor. Transportation Research Part A, 31(6), pp. 431–446, 1997. doi:10.1016/S0965-8564(97)00001-3

[30] González-Savignat, M., Competition in air transport. The case of the high speed train. Journal of Transport Economics and Policy, 38(1), pp. 77–108, 2004.

[31] Park, Y. & Ha, H.-K., Analysis of the impact of high-speed railroad service on air transport demand. Transportation Research Part E, 42, pp. 95–104, 2006. doi:10.1016/j.tre.2005.09.003

[32] Ahern, A.A. & Tapley, N., The use of stated preference techniques to model modal choices on interurban trips in Ireland. Transportation Research Part A: Policy and Practice, 42(1), pp. 15–27, 2008. doi:10.1016/j.tra.2007.06.005

[33] Rigas, K., Boat or airplane? Passengers’ perceptions of transport services to islands. The example of the Greek domestic leisure market. Journal of Transport Geography, 17(5), pp. 396–401, 2009. doi:10.1016/j.jtrangeo.2008.07.005

[34] J. de D. & Simonetti, C., Modelling the demand for medium distance air travel with the mixed data estimation method. Journal of Air Transport Management, 14, pp. 297–303, 2008.

[35] Ortúzar, J. de D. & Willumsen, L.G., Modelling Transport, 3rd edn. John Wiley & Sons: C hichester, 2001. doi:10.1016/j.jairtraman.2008.08.002

[36] Koppelman, F.S. & Bhat, C., A self instructing course in mode choice modeling: multinomial and nested logit models. U.S. Department of Transportation, Federal Transit Administration, 2006.

[37] Train, K., Discrete Choice Methods with Simulation, Cambridge University Press: Cambridge, 2003.

[38] Ben-Akiva, M.E. & Morikawa, T., Estimation of travel demand models from multiple data sources. Proceedings 11th International Symposium on Transportation and Traffic Theory, Yokohama, 1990.

[39] Bradley, M.A. & Daly, A.J., Estimation of logit choice models using mixed stated preference and revealed preference information. Understanding Travel Behavior in an Era of Change, ed. P.R. Stopher & M. Lee-Gosselin, Pergamon: Oxford, pp. 209–32, 1997.

[40] Jara-Díaz, S.R. & Farah, M., Transport demand and users’ benefits with fixed income: the goods/leisure trade-off revisited. Transportation Research, 21B, pp. 165–170, 1987. doi:10.1016/0191-2615(87)90014-2

[41] Jara-Díaz, S.R., Time and income in travel choice: towards a microeconomic activity-based theoretical framework. Theoretical Foundations of Travel Choice Modeling, ed. T. Garling, T. Laitila & K. Westin, Elsevier Science: Nueva York, pp. 51–74, 1998.

[42] Louviere, J.J., Hensher, D.A. & Swait, J.D., Stated Choice Methods: Analysis and Application, Cambridge University Press: Cambridge, 2000.

[43] Cherchi, E. & Ortúzar, J. de D., On fitting mode-specific constants in the presence of new options in RP/SP models. Transportation Research, 40A, pp. 1–18, 2004.

[44] Román, C., Espino, R. & Martín, J.C., Analyzing competition between the high speed train and alternative modes. The case of the Madrid-Zaragoza-Barcelona Corridor. Journal of Choice Modelling, 3(1), pp. 84–108 2010.