Implementation of Urban Building Energy Modeling in Historic Districts. Seville as Case- Study

Implementation of Urban Building Energy Modeling in Historic Districts. Seville as Case- Study

Rosana Caro-Martínez Juan J. Sendra 

Instituto Universitario de Arquitectura y Ciencias de la Construcción. Escuela Técnica Superior de Arquitectura. Universidad de Sevilla, Spain

Page: 
528-540
|
DOI: 
https://doi.org/10.2495/SDP-V13-N4-528-540
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Buildings represent 40% of the European Union’s final energy consumption and are largely of residential use. From 2006 to 2016, existing European housing stocks have been analysed at national level to make the energy refurbishment processes transparent and effective. However, at the meta-scale of regions, cities or neighbourhoods, case-by-case analysis using Building Energy Models (BEM) becomes an unfeasible decision-support tool. To try to overcome this limitation, the nascent field of Urban Building Energy Modelling (UBEM) is making substantial progress in the assessment of building energy performance at urban scale. Still, most of the UBEM projects rely upon archetypes – i.e. virtual or sample buildings illustrative of the most frequent characteristics of a particular category, and the definition and description of such archetypes may compromise their reliability. This paper presents an alternative UBEM approach, especially designed for the homogeneous historic districts of cities where a significant proportion of the buildings are under preservation rules. These rules can restrict the scope of the measures to improve their energy efficiency or limit the possibility of implementing renewable energy systems. We introduce a new parameter (HAD) to classify blocks according to their heritage asset density. HAD is then mapped onto the study-area and the sample block is selected as representative of the most frequent HAD category. Using the historic ensemble of Seville as case-study, this paper shows results in energy consumption on a district scale and proposes a set of solutions to improve the energy efficiency of the buildings while respecting the heritage preservation rules. To support consistent policy decisions, validation of these results has been carried out, by in-situ monitoring of a representative number of dwellings.

Keywords: 

energy demand, historic buildings archetypes, mediterranean climate, residential building stock, thermal rehabilitation, urban building energy modelling, urban heritage protection

  References

[1] von Rettberg, B. & Rodriguez-Maribona, I., Assessment of European and national policies related to energy efficiency and heritage conservation. EFFESUS Project Deliverable D1.3, 2013.

[2] von Rettberg, B. & Rodriguez-Maribona, I., European building and urban stock data collection. EFFESUS Project Deliverable D1.1, 2013.

[3] IDAE, Instituto para la Diversificación y Ahorro de Energía, ‘Project Sech-Spahousec, Analysis of the Energetic Consumption of the Residential Sector in Spain’, 2016.

[4] Ministerio de Fomento. Gobierno de España., ‘Estrategia a largo plazo para la rehabilitación energética en el sector de la edificación en España, en desarrollo del Artículo 4 Directiva 2012/27/UE’, 2014.

[5] Pracchi, V., Historic buildings and energy efficiency. The Historic Environment: Policy & Practice, 5(2), pp. 210–225, 2014. https://doi.org/10.1179/1756750514z.00000000052

[6] Fouseki, K. & Cassar, M., Energy efficiency in heritage buildings. future challenges and research needs. The Historic Environment: Policy & Practice, 5(2), pp. 95–100, 2014. https://doi.org/10.1179/1756750514z.00000000058

[7] Intelligent Energy Europe Programme of the European Union, ‘IEE Project TABULA. Typology approach for building stock energy assessment’, 2012. [Online]. Available at: http://episcope.eu/iee-project/tabula/

[8] Intelligent Energy Europe Programme of the European Union, ‘IEE Project EPISCOPE. Energy performance indicator tracking schemes for the continuous optimisation of refurbishment processes in European housing stocks’, 2016. [Online]. Available at: http://episcope.eu/iee-project/episcope/

[9] Vieites, E., Vassileva, I. & Arias, J.E., European initiatives towards improving the energy efficiency in existing and historic buildings. Energy Procedia, 75, pp. 1679–1685, 2015. https://doi.org/10.1016/j.egypro.2015.07.418

[10] Reinhart, C.F. & Cerezo Davila, C., Urban building energy modeling - a review of a nascent field. Building and Environment, 97, pp. 196–202, 2016. https://doi.org/10.1016/j.buildenv.2015.12.001

[11] Monteiro, C.S., Pina, A., Cerezo, C., Reinhart, C. & Ferrão, P., The use of multi-detail building archetypes in urban energy modelling. Energy Procedia, 111, pp. 817–825, 2017. https://doi.org/10.1016/j.egypro.2017.03.244

[12] Ayuntamiento de Sevilla, Portal de Datos Abiertos del Ayuntamiento de Sevilla | Catálogo de Datos. [Online]. Available at: http://datosabiertos.sevilla.org/data/

[13] Ayuntamiento de Sevilla, ‘ide.SEVILLA’. [Online]. Available at: http://sig.urbanismosevilla.org/InicioIDE.aspx

[14] Ministerio de Hacienda y Función Pública, ‘Sede Electrónica del Catastro’. [Online]. Available at: https://www.sedecatastro.gob.es/

[15] Real Decreto 2429/1979, de 6 de julio, por el que se aprueba la norma básica de la edificación NBE-CT-79, sobre condiciones térmicas en los edificios, pp. 24524–24550, 1979.

[16] IDAE, Instituto para la diversificación y Ahorro de la Energía. ‘Manual de fundamentos técnicos de certificación energética de edificios existentes CE3X (004,2)’, 2015.

[17] IDAE, Instituto para la Diversificación y Ahorro de Energía. ‘Condiciones de aceptación de procedimientos alternativos a LIDER y CALENER. Anexos’, Efic. y Ahorr. energético, 2009.

[18] Ministerio de Industria, Energía y Turismo. ‘Factores de emisión de CO2 y coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios en España’, p. 16, 2016.

[19] Secretaria de Estado de Energía. ‘Reglamento de las instalaciones térmicas en los edificios’, 2013.

[20] Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F., World map of the KöppenGeiger climate classification updated. Meteorologische Zeitschrift, 15(3), pp. 259–263, 2006. https://doi.org/10.1127/0941-2948/2006/0130

[21] ‘International Weather for Energy Calculations | ashrae.org’. [Online]. Available at: https://www.ashrae.org/resources--publications/bookstore/international-weather-for-energy-calculations

[22] Sendra, J.J., Proyecto Efficacia: optimización energética en la vivienda colectiva. Secretaria de Publicaciones de la Universidad de Sevilla, Sevilla, 2011.

[23] Sendra, J.J., Domínguez Amarillo, S., Bustamante Rojas, P. & León Rodríguez, A.L., Energy intervention in the residential sector in the south of Spain: Current challenges. Informes de la Construcción, 65, pp. 457–474, 2013. https://doi.org/10.3989/ic.13.074

[24] Santamaría, J., Girón, S. & Campano, M.A., Economic assessments of passive thermal rehabilitations of dwellings in Mediterranean climate. Energy and Buildings, 128, pp. 772–784, 2016. https://doi.org/10.1016/j.enbuild.2016.07.035

[25] Ministerio de Industria Energía y Turismo. ‘La Energía en España 2015’, 2016.

[26] Universidad de Sevilla, Universidad Pablo de Olavide, ‘Aqua-Riba. Guía Para La Incorporación De La Gestión Sostenible Del Agua En Áreas Urbanas’, 2015.