BIM – Towards the Entire Lifecycle

BIM – Towards the Entire Lifecycle

Ralf Becker Viktoria Falk Sabrina Hoenen Sören Loges Sven Stumm Jörg Blankenbach Sigrid Brell-Cokcan Linda Hildebrandt Dirk Vallée

Chair for Computing in Civil Engineering and Geo Information Systems, RWTH Aachen University, Germany

Chair of Individualized Production in Architecture, RWTH Aachen University, Germany

Chair of Urban and Transport Planning, RWTH Aachen University, Germany

Chair for Reuse in Architecture, RWTH Aachen University, Germany

Page: 
84-95
|
DOI: 
https://doi.org/10.2495/SDP-V13-N1-84-95
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The goal of Building Information Modeling (BIM) is the integral and comprehensive digital modeling of all properties regarding a building, its planning and construction process as well as maintenance and use. This is combined with the overarching objective within BIM to integrate and support all involved experts aiming towards an improved collaboration. Currently the necessary data often only exists in a very fragmented and uncoordinated way throughout different subsections, as well as planning and construction phases. A lack of organized information management is especially noticeable in finalized built objectives during questions of conversion and refurbishment. BIM tries to mediate between the different views of its users and allows for a coordinated accumulation of data, as well as synchronously keeping the planning status up to date. However, in most cases essential information is missing or not used throughout the complete lifecycle of the building. Consequently, there are clear gaps between the different phases of planning, construction and maintenance.

Within this paper, we give an evaluation of applicable methods for data collection and modeling of the actual inventory of components with regard to position, geometry and semantics (e.g. material) for the purpose of a comprehensive and BIM-compliant as-built documentation. This allows the analysis of missing interfaces and data. Considered from a process automation viewpoint, we identify missing BIM data e.g. for assembly processes within construction in order to create a BIM-aided planning process that continues into actual fabrication and construction. Based on this, we discuss possibilities for the implementation of user requirements in order to develop a comprehensive semi-automated decision support tool for BIM users.

Primary goal is to provide concepts for the integration of construction processes as well as options for conversion planning and construction of buildings. These targets imply a continuous updating of the BIM models (including the semantic parameters) from a continuous ‘as-built’ acquisition and modeling of the construction progress.

While BIM primarily is being discussed as a cooperative working methodology in the new planning of buildings, we also consider the required information for future conversion and refurbishment of the building and the required level of development, in order to complete the lifecycle approach of BIM.

Keywords: 

as-built documentation, automation, BIM, decision support tool, existing buildings, lifecycle, model extension, refurbishment

1. Introduction
2. Modeling for BIM
3. Working with BIM
4. Advanced BIM – Requirements and Chances
  References

[1] NBIM, BIM-Definition des National Building Information Model Standard Project Committee (NBIM), available at https://www.nationalbimstandard.org/ faqs#faq1. accessed January 2017.

[2] Mortenson, M. E., Geometric Modeling, 3rd Edition, Industrial Press: Canada, 2006.

[3] Blankenbach, J., Building Information Modeling (BIM). In: Möser, M. u.a.: Handbuch Ingenieurgeodäsie – Ingenieurbau, 2. Auflage. Wichmann Verlag. ISBN: 978-3-87907 593-5, 2016. (in German)

[4] Egger, M., et al., BIM-Leitfaden für Deutschland – Information und Ratgeber – Endbericht, 2013, (in German), available at http://www.bbsr.bund.de/BBSR/DE/FP/ZB/Auftragsforschung/ 3Rahmenbedingungen/2013/BIMLeitfaden/Endbericht.pdf. accessed February 2016.

[5] Gleisner, W., Projektrating und Projektbewertung von Investitionen, BRZ-Hochschul-SYMPOSIUM 2015, (in German), available at http://www.brz.eu/fileadmin/editors/files/de/d_docs/event/hochschulsymposium_2015/Projektrating_und_Projektbewertung_von_Investitionen_gleissner.pdf. accessed Feburary 2016.

[6] BMVI, (eds.), Stufenplan Digitales Planen und Bauen: Einführung moderner, IT-gestützter Prozesse und Technologien bei Planung, Bau und Betrieb von Bauwerken, Berlin, 2015. (in German)

[7] DIN e.V., DIN SPEC 91400, Building Information Modeling: vom Modell zur Leistungsbeschreibung, Berlin. (in German)

[8] BMUB, (eds.), Leitfaden Barrierefreies Bauen. Hinweise zum inklusiven Planen von Baumaßnahmen des Bundes, Berlin, 2016. (in German)

[9] BMJV, Verordnung über die Honorare für Architekten- und Ingenieurleistungen (Honorarordnung für Architekten und Ingenieure - HOAI), § 34 Leistungsbild Gebäude und Innenräume, Fassung von 2013 (in German), available at https://www.gesetzeim- internet.de/hoai_2013/__34.html. accessed January 2017.

[10] Strack, S., Entwicklung eines Bewertungssystems für Redevelopment-Maßnahmen von leer stehenden Gebäuden für Wohnzwecke, PhD, In Institut für Bauwirtschaft, kassel university, Schriftenreihe Bauwirtschaft, Forschung 16, Kassel, p. 90, 2010. (in German)

[11] TU Wien, BIM. ROADMAP für integrale Planung, pp. 31–32, 36, (in German), available at http://docplayer.org/6289795-Bim-roadmap-fuer-integraleplanung.html. accessed January 2017.

[12] Fathi, H., Dai, F. & Lourakis, M., Automated as-built 3D reconstruction of civil infrastructure using computer vision: Achievements, opportunities, and challenges. Advanced Engineering Informatics, 29(2), pp. 149–161, 2015. https://doi.org/10.1016/j.aei.2015.01.012

[13] Luhmann, T., Nahbereichsphotogrammetrie: Grundlagen, Methoden und Anwendungen (3. Aufl). Berlin: Wichmann, VDE-Verlag, 2010. (in German)

[14] Leica, Leica Pegasus:Backpack - Mobile reality capture, 2017, available at http://leicageosystems.com/-/media/files/products/brochures/leica_pegasusbackpack_bro.ashx?la=en accessed February 2017.

[15] Viamtris, iMS3D - Continuous Building 3D Scanner for surveyors and topographers, 2017, available at http://viametris.info/resources/public/iMMS2/EN/VIAMETRIS%20-%20iMS3D%20v2c%20Leaflet%20EN.pdf. accessed February 2017.

[16] Thomson, C., Apostolopoulous, G., Backes, D. & Boehm, J., Mobile Laser Scanning for Indoor Modelling. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W2, pp. 289–293, 2013.

[17] Braunes, Von der Punktwolke zum Building Information Model (BIM) Konsequenzen und Wege für die Bestandserfassung. VDVmagazin, 2/14, pp. 132–136, 2014. (in German)

[18] Adan, A. & Huber, D., 3D reconstruction of interior wall surfaces under occlusion and clutter. In 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011 International Conference on IEEE, pp. 275–281, 2011.

[19] Jung, J., Hong, S., Jeong, S., Kim, S., Cho, H., Hong, S. & Heo, J., Productive modeling for development of as-built BIM of existing indoor structures. Automation in Construction, 42, pp. 68–77, 2014. https://doi.org/10.1016/j.autcon.2014.02.021

[20] Macher, H., Landes, T. & Grussenmeyer, P., Point clouds segmentation as base for as-built BIM creation. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W3, pp. 191–197, 2015.

[21] Tonn, C. & Bringmann, O., Punktwolken zu BIM - Methoden der Bauteilanpas-sung in Laserscan Daten. In Photogrammetrie - Laserscanning - optische 3D-Messtechnik: Beiträge der Oldenburger 3D-Tage 2016, Thomas Luhmann, Christina Schumacher (eds.), Berlin Offenbach: Wichmann. ISBN 978-3-87907-604-8, 2016. (in German).

[22] Xiong, X., Adan, A., Akinci, B. & Huber, D., Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, pp. 325–337, 2013. https://doi.org/10.1016/j.autcon.2012.10.006

[23] Lagüela, S., Diaz-Vilariño, L., Martinez, J. & Armesto, J., Automatic thermographic and RGB texture of as-built BIM for energy rehabilitation purposes. Automation in Construction, 31, pp. 230–240, 2013. https://doi.org/10.1016/j.autcon.2012.12.013

[24] Blut, C. & Görtz, A., BIM im Bestand – Entwicklung einer optimierten Methode für die parametrische Modellierung auf Grundlage des tachymetrischen Gebäudeaufmaßes. In Real EHRLICH/BLUT /Hrsg.: Bauinformatik 2015 - Beiträge zum 27. Forum Bauinformatik. Wichmann – VDE, Offenbach, ISBN 978-3879076055, 2015. (in German)

[25] FLEXJET GMBH (2017): „Flexijet - Innovation CAD-Aufmass: Das Flexijet 3D“, available at https://www.flexijet.info/produkte/flexijet-3d/das-flexijet-3d/, 2017. Accessed February 2017.

[26] NATSPEC (2013)., BIM and LOD - Building Information Modelling and Level of Development. Australien: Construction Information Systems Limited, 2013. ABN 20 117 574 606.

[27] BIMFORUM., Level of development specification, 2016, available at http://bimforum.org/lod/2016, accessed February 2017.

[28] Hausknecht, K. & Liebich, T., BIM-Kompendium – Building Information Modeling als neue Planungsmethode. Fraunhofer IBR Verlag, ISBN: 978-3-8167-9489-9, 2016. (in German)

[29] Van Treeck, C., Elixmann, R., Rudat, K., Hiller, S., Herkel, S. & Berger, M., Gebäude. Technik.Digital: Building Information Modeling. Springer-Verlag GmbH Berlin Heidelberg, ISBN: 978-3-662-52824-2, 2016.

[30] Taylor, M., Wamuziri, S. & Smith, I., Automated construction in Japan, In Proceedings of ICE, Paper 12562, pp. 34–41, 2003.

[31] Brell-Cokcan, S. & Braumann, J., Robotic production immanent design: creative toolpath design in micro and macro scale. In Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Los Angeles, 2014.

[32] Hollberg, A., Parametric Life Cycle Assessment. (PhD), Bauhaus Universität Weimar, Weimar, 2016.

[33] Durmisevic, E., Transformable Building Structures - Design for disassembly as a way to introduce sustainable engineering to building design & construction. (PhD), Technische Universiteit Delft, 2006, Delft.

[34] Markova, S., Extending IFC for Parametric Sustainable Building Design. CAADRIA, 18th, 2013.