Experimental Results on Permeable Pavements in Urban Areas: a Synthetic Review

Experimental Results on Permeable Pavements in Urban Areas: a Synthetic Review

M.Marchioni G.Becciu 

Department of Civil and Environmental Engineering, Politecnico di Milano, Italy

31 December 2015
| Citation



Permeable pavements can reduce volumes and improve water quality of stormwater runoff by allowing water to infiltrate on its structure, easily integrating with other water control strategies in sustainable urban drainage systems. This solution is already well known, commercially available and referred to on many municipal legislations. This literature review discuss the role of permeable pavements in urban drainage by analyzing the main results on full-scale tests, especially regarding runoff volume reduction and quality improvement. Research results and case studies reported in literature confirm both the feasibility and the benefits of the use of permeable pavements in urban areas, even though research is still required on some application issues.


permeable pavement, SUDs, sustainability, urban drainage


[1] Paulo, S., Manual de Drenagem e manejo de águas pluviais: gerenciamendo do sistema de drenagem urbana, ed. S.M.d.D.U. (SMDU), Editor, São Paulo. p. 168, 2012. doi: http://dx.doi.org/10.11606/t.90.2014.tde-22082014-152009

[2] Field, R. & Tafuri, A.N., The Use of Best Management Practices (BMPs) in Urban Watersheds, DEStech Publications, 2006.

[3] Woods-Ballard, B., et al., The SUDS Manual (C697), CIRIA, 2007.

[4] Elliott, A.H. & Trowsdale, S.A., A review of models for low impact urban stormwater drainage. Environmental Modelling & Software, 22(3), pp. 394–405, 2007. doi: http://dx.doi.org/10.1016/j.envsoft.2005.12.005

[5] Paulo, S., Manual de Drenagem e manejo de águas pluviais: aspectos tecnológicos, diretrizes para projetos, ed. S.M.d.D.U. (SMDU), São Paulo, p. 128, 2012.

[6] Marchioni, M.L. & Becciu, G., Permeable pavement used on sustainable drainage systems (SUDs): a synthetic review of recent literature. WIT Press Urban Water II, p. 12, 2014. doi: http://dx.doi.org/10.2495/uw140161

[7] Pratt, C.J., Sustainable drainage: A review of published material on the performance of various SUDS components. Prepared for the Environment Agency. SUDS Science Group/99705.015, 2004.

[8] Ferguson, B.K., Porous Pavements, Taylor & Francis, 2005.

[9] Smith, D.R., Evaluations of concrete grid pavements in the United States. Second International Conference on Concrete Block Paving, Delft, 1984.

[10] Hogland, W., Niemczynowicz, J. & Wajlman, T., The unit superstructure during the construction period. Science of the Total Environment, 59, pp. 411–424, 1987. doi: http://dx.doi.org/10.1016/0048-9697(87)90464-5

[11] Pratt, C.J., Permeable pavements for stormwater quality enhancement. Urban Stormwater Quality Enhancement@ sSource Control, Retrofitting, and Combined Sewer Technology, ASCE, 1990.

[12] Pratt, C.J., Mantle, J. & Schofield, P., UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality. Water Science and Technology, 32(1), pp. 63–69, 1995. doi: http://dx.doi.org/10.1016/0273-1223(95)00539-y

[13] Pratt, C.J., Use of permeable, reservoir pavement constructions for stormwater treatment and storage for re-use. Water Science and Technology, 39(5), pp. 145–151, 1999. doi: http://dx.doi.org/10.1016/s0273-1223(99)00096-7

[14] Legret, M., Colandini, V. & Le Marc, C., Effects of a porous pavement with reservoir structure on the quality of runoff water and soil. Science of the Total Environment, 189–190, pp. 335–340, 1996. doi: http://dx.doi.org/10.1016/0048-9697(96)05228-x

[15] Legret, M. & Colandini, V., Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Science and Technology, 39(2), pp. 111–117,1999. doi: http://dx.doi.org/10.1016/s0273-1223(99)00014-1

[16] Pagotto, C., Legret, M. & Le Cloirec, P., Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Research, 34(18), pp. 4446–4454, 2000. doi: http://dx.doi.org/10.1016/s0043-1354(00)00221-9

[17] Asaeda, T. & Ca, V.T., Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Building and Environment, 35(4), pp. 363–375, 2000. doi: http://dx.doi.org/10.1016/s0360-1323(99)00020-7

[18] Dierkes, C., et al., Pollution retention capability and maintenance of permeable pavements, Global Solutions for Urban Drainage, Proc. of the Ninth Int. Conf. on Urban Drainage, 8–13 September 2002, Portland, OR, 2002. doi: http://dx.doi.org/10.1061/40644(2002)40

[19] Gerritts, C. & James, W., Restoration of infiltration capacity of permeable pavers. Proceedings of 9th International Conference on Urban Drainage. ASCE. Portland, OR, 2002.

[20] Schlüter, W. & Jefferies, C., Modelling the outflow from a porous pavement. Urban Water, 4(3), pp. 245–253, 2002. doi: http://dx.doi.org/10.1016/s1462-0758(01)00065-6

[21] Knapton, J., Cook, I.D. & Morrell, D., A new design method for permeable pavements surface with pavers. Highway Engineer from The Institution of Highways & Transportation, 2002.

[22] Brattebo, B.O. & Booth, D.B., Long-term stormwater quantity and quality performance of permeable pavement systems. Water Research, 37(18), pp. 4369–4376, 2003. doi: http://dx.doi.org/10.1016/s0043-1354(03)00410-x

[23] Bean, E.Z., et al., Study on the surface infiltration rate of permeable pavements. Proceedings of the American Society of Civil Engineers and EWRI 2004 World Water and Environmental Resources Congress, Salt Lake City, UT, USA, 2004, p. 27.

[24] Acioli, L.A., Estudo experimental de pavimentos permeaveis para o controle de escoamento superficial na fonte, Recursos Hidricos e Saneamento Ambiental, Universidade Federeal do Rio Grande do Sul, Porto Alegre, p. 162, 2005.

[25] Jabur, A.S., Relatório final de pós-doutorado, Universidade Federal do Rio Grande do Sul, p. 42, 2013.

[26] Pellizzari, V., Avaliação da eficácia na restauração da capacidade de infiltração da camada superior de pavimentos porosos, 2013.

[27] Dreelin, E.A., Fowler, L. & Ronald Carroll, C., A test of porous pavement effectiveness on clay soils during natural storm events. Water Research, 40(4), pp. 799–805, 2006. doi: http://dx.doi.org/10.1016/j.watres.2005.12.002

[28] Beeldens, A. & Herrier, G., Water pervious pavement blocks: the Belgian experience, Eighth International Conference on Block Paving Materials, 2006.

[29] Van Duin, B., et al. Characterization of long-term solids removal and clogging processes in two types of permeable pavement under cold climate conditions, 11th International Conference on Urban Drainage, 2008.

[30] Knapton, J. & McBride, C., Permeable pavements for heavily trafficked roads – a full-scale trial, 9th International Conference on Concrete Block Paving, Argentina, 2009.

[31] Collins, K.A., Hunt, W.F. & Hathaway, J.M., Evaluation of various types of permeable pavements with respect to water quality improvement and flood control, 8th International Conference on Concrete Block Paving, San Francisco, CA, 2006. doi: http://dx.doi.org/10.13031/2013.21098

[32] Virgiliis, A.L.C.d., Procedimentos de projeto e execução de pavimentos permeáveis visando retenção e amortecimento de picos de cheias, Escola Politécnica - Engenharia de Transportes, Universidade de São Paulo: São Paulo, p. 213, 2009. doi: http://dx.doi.org/10.11606/d.3.2009. tde-08092010-122549

[33] Pinto, L.L.C.A., O desempenho de pavimentos permeáveis como medida mitigadora da impermeabilização do solo urbano, Escola Politécnica – Engenharia de Transportes, Universidade de São Paulo: São Paulo, 2011. doi: http://dx.doi.org/10.11606/t.3.2011.tde-31082011-160233

[34] Borst, M., Surface Infiltration Rates of Permeable Surfaces: Six Month Update (November 2009 through April 2010), National Risk Management Research Laboratory, Water Supply and Water Resources Division, US Environmental Protection Agency, 2010.

[35] Morgenroth, J., Buchan, G. & Scharenbroch, B.C., Belowground effects of porous pavements – soil moisture and chemical properties. Ecological Engineering, 51, pp. 221–228, 2013. doi: http://dx.doi.org/10.1016/j.ecoleng.2012.12.041

[36] Newman, A.P., Aitken, D. & Antizar-Ladislao, B., Stormwater quality performance of a macro-pervious pavement car park installation equipped with channel drain based oil and silt retention devices. Water Research, 47(20), pp. 7327–7336, 2013. doi: http://dx.doi.org/10.1016/j.watres.2013.05.061

[37] Smith, D.R., Permeable Interlocking Concrete Pavements, ICPI: USA, 2000.

[38] Hein, D.K., Swan, D. & Schaus, L., Structural and hydrological design of permeable pavements, 2010 Annual Conference of the Transportation Association of Canada, Halifax, Nova Scotia, 2010.

[39] Suda, S., et al., Development and application of permeable paving concrete block, International Conference on Concrete Block Paving, 1988, 3rd, Rome, Italy, 1988.

[40] Qin, H.-P., Li, Z.-X. & Fu, G., The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, pp. 577–585, 2013. doi: http://dx.doi.org/10.1016/j.jenvman.2013.08.026

[41] Sansalone, J., et al., Retrofitting impervious urban infrastructure with green technology for rainfall-runoff restoration, indirect reuse and pollution load reduction. Environmental Pollution,. 183, pp. 204–212, 2013. doi: http://dx.doi.org/10.1016/j.envpol.2013.01.051

[42] Pratt, C., Newman, A. & Bond, P., Mineral oil bio-degradation within a permeable pavement: long term observations. Water Science and Technology, 39(2), pp. 103–109, 1999. doi: http://dx.doi.org/10.1016/s0273-1223(99)00013-x

[43] Mullaney, J., Rikalainen, P. & Jefferies, C., Pollution profiling and particle size distribution within permeable paving units – with and without a geotextile. Management of Environmental Quality: An International Journal. 23(2), pp. 150–162, 2012. doi: http://dx.doi.org/10.1108/14777831211204903

[44] McCarthy, D.T., et al., Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Research, 46(20), pp. 6661–6670, 2012. doi: http://dx.doi.org/10.1016/j.watres.2012.01.006

[45] Tota-Maharaj, K. & Scholz, M., Combined permeable pavement and photocatalytic titanium dioxide oxidation system for urban run-off treatment and disinfection. Water and Environment Journal, 27(3), pp. 338–347, 2013. doi: http://dx.doi.org/10.1111/j.1747-6593.2012.00350.x

[46] Kipkie, C., Feasibility of a permeable pavement option in the storm water management model (SWMM) for long term continuous modelling. Master of Science Thesis, University of Guelph, 1998. doi: http://dx.doi.org/10.14796/jwmm.r206-18

[47] Imteaz, M.A., et al., Modelling stormwater treatment systems using MUSIC: accuracy. Resources, Conservation and Recycling, 71, pp. 15–21, 2013. doi: http://dx.doi.org/10.1016/j.resconrec.2012.11.007

[48] Borgwardt, S., Long-term in-situ infiltration performance of permeable concrete block pavement, Proceedings, 2006.

[49] Yong, C.F., McCarthy, D.T. & Deletic, A., Predicting physical clogging of porous and permeable pavements. Journal of Hydrology, 481, pp. 48–55, 2013. doi: http://dx.doi.org/10.1016/j.jhydrol.2012.12.009

[50] de Sousa Pinto, C., Curso básico de mecânica dos solos: exercícios resolvidos, Oficina de Textos, 2001.

[51] Terzaghi, K. & Peck, R.B., Soil Mechanics in Engineering Practice, 2nd edn, John Wiley,1968.

[52] Marchioni, M.L. & Silva, C.O., Método de ensaio para avaliação de pavimento permeável executado. 55th Congresso Brasileiro do Concreto CBC2013, IBRACON: Gramado, 2013.

[53] ASTM, Standard Test Method for Infiltration Rate in Place of Pervious Concrete. 2009.

[54] Smith, D.R., Earley, K. & Lia, J.P.E., Potential application of ASTM C1701 for evaluating surface infiltration of permeable interlocking concrete pavements, 10th International Conference on Concrete Block Paving, Shanghai, 2012.

[55] Li, H., Kayhanian, M. & Harvey, J.T., Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods. Journal of Environmental Management, 118, pp. 144–152, 2013. doi: http://dx.doi.org/10.1016/j.jenvman.2013.01.016