Mapping Island Village Typology Based on Spatial and Socio-Economic Characteristics in Maluku Province, Indonesia

Mapping Island Village Typology Based on Spatial and Socio-Economic Characteristics in Maluku Province, Indonesia

Ramla Dula Saleh* Ernan Rustiadi Akhmad Fauzi Hania Rahma

Regional and Rural Development Planning, Faculty of Economics and Management, IPB University, Kota Bogor 16680, Indonesia

Division of Regional Development Planning, Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia

Corresponding Author Email: 
ramladulasaleh@apps.ipb.ac.id
Page: 
2365-2377
|
DOI: 
https://doi.org/10.18280/ijsdp.200609
Received: 
22 May 2025
|
Revised: 
23 June 2025
|
Accepted: 
27 June 2025
|
Available online: 
30 June 2025
| Citation

© 2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

Development in archipelagic regions requires a more specific approach that addresses the objective challenges faced by these areas. Therefore, mapping village typologies—particularly based on geographic similarities, spatial characteristics, and socio-economic conditions—is essential. This is especially important considering the diverse potentials and challenges faced by villages scattered across different islands or island clusters. This study was conducted in Maluku Province, an archipelagic region in Eastern Indonesia characterized by thousands of islands, including large islands, small islands, and outermost islands. The province comprises 1,233 villages, 118 sub-districts, and 11 districts/cities. The analysis employed a combination of Principal Component Analysis (PCA), K-Means Clustering, and ArcGIS 10 to produce a Village Typology Map. The results identified four principal components that formed five distinct village typologies: (1) “Coastal” Typology, comprising 298 coastal villages; (2) “Non-Coastal” Typology, comprising 137 inland villages; (3) “Outer/Border” Typology, comprising 522 outermost villages; (4) “Urban Zone” Typology, comprising 116 urban villages; and (5) “Small Islands” Typology, comprising 160 villages located on small islands. The implication of these findings is that village typologies—constructed based on geographic, spatial, and socio-economic aspects—serve as an entry point for implementing targeted and contextually relevant development strategies to accelerate development in the archipelagic regions of Maluku Province, Indonesia.

Keywords: 

village typology, archipelago, Maluku, PCA, K-Means Clustering

1. Introduction

Archipelagic regions are characterized by their unique, complex, and diverse nature, where each island often faces relatively distinct challenges—not only in terms of geographical conditions but also regarding connectivity, population distribution, socio-economic aspects, and the availability of natural resources [1, 2]. This diversity in characteristics contributes to disparities in access to resources, infrastructure, and economic opportunities, which in turn results in unequal distribution of development benefits [3-6].

One of Indonesia’s prominent archipelagic regions is Maluku Province, where approximately 92% of its area consists of marine territory, and only 7% is land, comprising 1,388 islands of varying sizes and natural resource potentials [7]. As an archipelagic region, Maluku faces several fundamental challenges, most notably limited connectivity and accessibility. These limitations restrict economic activities and hinder regional development. Furthermore, development policies implemented in Maluku have largely followed a “continental-centric” approach, often failing to accommodate the specific needs of island regions. As a result, many policy interventions do not adequately address the root causes and urgent development priorities [8].

One of the consequences of this policy misalignment is the persistently high poverty rate in Maluku, especially on islands with minimal infrastructure, basic services, and limited access to economic opportunities. As of 2022, statistical data indicate that Maluku ranked as the fourth poorest province in Indonesia, with a poverty rate of 16.42% [9].

To formulate more accommodative and measurable development policies for Maluku, it is essential to map the typology of its archipelagic regions based on their physical, geographical, and socio-economic characteristics. Such typological classification supports more targeted development planning, enables the formulation of affirmative policies, and facilitates more efficient resource and budget allocation in line with actual needs—thereby promoting more effective and sustainable development outcomes [10-12].

Based on these considerations, this study aims to address the research question: how can village typologies be defined based on the spatial characteristics of island regions and the socio-economic conditions in Maluku Province?

In the context of an archipelagic region, village typology analysis is crucial, given that villages scattered across various islands or island clusters face distinct challenges and possess unique potential. Villages located on large islands encounter different development issues compared to those on small islands; likewise, coastal villages have different socio-economic dynamics than those in mountainous or inland regions. This also applies to remote, outermost, and border-area villages.

2. Methods

2.1 Data collection and location of the study sites

The study was conducted in Maluku Province, Indonesia, encompassing 1,233 villages (including urban administrative units or kelurahan) distributed across 11 districts/ municipalities and 118 sub-districts (Figure 1). Socio-economic data were sourced from the Village Development Index (Indeks Pembangunan Desa, IPD) provided by Statistics Indonesia (Badan Pusat Statistik, BPS) and the Village Development Index (Indeks Desa Membangun, IDM) published by the Ministry of Villages, Development of Disadvantaged Regions, and Transmigration of the Republic of Indonesia. Spatial data were obtained from the Village Administrative Boundary Map provided by the Geospatial Information Agency (Badan Informasi Geospasial, BIG), the Land Cover Map issued by the Ministry of Environment and Forestry, as well as regulatory documents related to coastal areas, small islands, and outermost and border islands.

Figure 1. Map of study sites

2.2 Data analysis

There are 3 methods applied, namely: 1) Principal Component Analysis (PCA); 2) K-Means Clustering; and 3) Regional Typology Analysis which is visualized in the form of a map. This study employed 11 input variables, namely: (1) population density; (2) percentage of built-up area; (3) availability of urban facilities; (4) outermost status; (5) distance from the national border; (6) island size; (7) island category; (8) marine resource utilization; (9) direct adjacency to the sea; (10) absence of coastline; and (11) location within forest areas. These variables were selected as they are considered to represent the geospatial characteristics of island regions and the socio-economic conditions of villages in Maluku Province, and because relevant data are available.

2.2.1 PCA

PCA method was employed to classify villages based on regional characteristics and multidimensional poverty indicators, including economic aspects, socio-cultural conditions, geographical challenges, and several spatial indicators relevant to archipelagic areas. This method transforms the original dataset linearly into a new coordinate system that maximizes variance, without significantly altering the intrinsic properties of the data. Smaller, transformed datasets are generally easier to explore, visualize, and analyze.

Technically, dimensionality reduction in PCA is guided by the proportion of variance explained by the principal components. First, if the cumulative variance of the original data exceeds 70% or the eigenvalue (λ) of a component is greater than 1, then the analysis is considered sufficient up to that component. The PCA process was carried out in five main steps as follows:

Step 1. Data standardization, to produce data of the same scale. Data standardization is carried out with the following equation:

$Z_{a p} \frac{x_{a p}-x_p}{S_p}$                         (1)

where,

Zap: standardized data

Xap: a data on the p variable

$\overline{x_p}$: average data of the p variable

Sp: standard deviation of the p variable

Step 2. Calculating the covariance matrix based on correlation coefficients, which are derived using the following equation:

$rz_p, z_q=\frac{n\left(\sum_{a=1}^n z_{a p} z_{a q}\right)-\left(\sum_{a=1}^n z_{a p}\right) \cdot\left(\sum_{a=1}^n z_{a q}\right)}{\sqrt{\left(\sum_{a=1}^n z_{a p}^2\right)-\left(\sum_{a=1}^n z_{a p}\right)^2} \cdot \sqrt{\left(\sum_{a=1}^n z_{a q}^2\right)-\left(\sum_{a=1}^n z_{a q}\right)^2}}$                            (2)

Step 3. Calculating the eigenvalues and eigenvectors of the covariance matrix using the following equations:

Eigenvalue: $|\lambda I-R|=\overrightarrow{0}$                         (3)

Eigenvector: $(R \vec{v}=\lambda \vec{v})$                          (4)

Step 4. Determining the number of principal components (PCs) based on the criterion of eigenvalues greater than or equal to 1, and constructing the component loading matrix, which represents the correlations between the original variables and the component scores, using the following equation:

$r_{X_p, P C_t}=\overrightarrow{v_{a t}} \sqrt{\lambda_t}$                           (5)

Step 5. Calculating the transformed dataset resulting from PCA dimensionality reduction, using the following equation:

$P C_{a t}=\overrightarrow{v_{1 a}} Z_1+\overrightarrow{v_{2 a}} Z_2+\ldots+\overrightarrow{v_{a p}} Z_p$                             (6)

Step 6. Interpretation of components was conducted using the Rotated Component Matrix to identify the dominant variables in each component. The interpretation was based on the factor loadings, or the highest correlation values between variables and components.

2.2.2 K-Means Clustering

The PCA results were further analyzed using clustering techniques, which involve grouping objects into several clusters based on the similarity of their data characteristics. In general, clustering methods are divided into two types: hierarchical clustering (structure-based) and partitional clustering (non-hierarchical). Considering the relatively large dataset, this study employed a partitional clustering method, in which the data were grouped into a predefined number of clusters without a hierarchical structure. Each cluster has a central point (centroid) that minimizes the dissimilarity distance between all data points and their respective cluster centers.

The stages of the K-Means Clustering analysis are as follows:

Step 1. Determine the dataset to be clustered in the form of a matrix X with dimensions n × m (where n is the number of samples and m is the number of attributes per data point);

Step 2. Specify the number of clusters (c), fuzzification coefficient or exponent (w), maximum number of iterations (maxiter), the desired minimum error (ε), the initial objective function value (P₀ = 0), and the initial iteration (t = 1);

Step 3. Generate random numbers μᵢₖ, where i = 1, 2, 3, …, n and k = 1, 2, 3, …, c, as elements of the initial partition matrix U, which represent the degree of membership of each data point to a cluster.

Step 4. Calculate the center of the k-th cluster Vₖⱼ, where k = 1, 2, …, c and j = 1, 2, …, m.

$V_{k j}=\frac{\sum_{i=1}^n\left(\left(\mu_{i k}\right)^w \times X_{i j}\right)}{\sum_{i=1}^n\left(\mu_{i k}\right)^w}$                            (7)

Step 5. Calculates the objective function on the t-iteration, Pt, which describes the total distance of the data to the center of the cluster.

$P t=\sum_{i=1}^n \sum_{k=1}^c\left(\left[\sum_{j=1}^m\left(X_{i j}-v_{k j}\right)^2\left(\mu_{i k}\right)^w\right]\right)$                            (8)

where,

Pt: Objective function

Xij: element X row i, column j

Vkj: Cluster Centers

Step 6. Calculate partition matrix changes:

$\mu_{i k}=\frac{\left(\left(\sum_{j=1}^m\left(X_{i j}-V_{k j}\right)\right)^2\right)^{\frac{-1}{w-1}}}{\sum_{k=1}^c\left(\left(\sum_{j=1}^m\left(X_{i j}-V_{k j}\right)\right)^2\right)^{\frac{-1}{w-1}}}$                            (9)

where,

i: 1,2,…, n

k: 1,2, ..., c

Xij: the i-th data sample for the j-th variable

Vkj: the center of the k-th cluster for the j-th variable 

w: the weighting exponent (fuzzification coefficient)

Step 7. Check the stopping condition:

•If $\left|P_t-P_{t-1}\right|<\varepsilon$ or ( maxiter), then the algorithm terminates.

•If not, set t = t + 1 and repeat step 4.

Step 8. Melakukan Validate the cluster results using the Davies-Bouldin Index (DBI), calculated using the following equation:

$D B I=\frac{1}{k} \sum_{i=1}^k \max _{i \neq j}\left(R_{i, j}\right)$                         (10)

where,

DBI: Davies-Bouldin Index

Ri,j: The ratio of comparison values between the i-th cluster and the j-th cluster

k: The number of clusters used

Step 9. Interpret the best clustering results based on the smallest Davies-Bouldin Index (DBI) value.

2.2.3 Regional typology analysis

The clustering results generated through the K-Means method were further processed using ArcGIS 10.4 and visualized in the form of thematic maps. This process began with importing the clustering data into ArcGIS, stored in compatible formats such as .csv, .shp, or other tabular formats. The dataset included geographic coordinates (latitude and longitude) along with cluster labels as additional attributes indicating the classification outcomes.

The next step involved integrating the clustering data with spatial maps. If the data lacked direct geographic coordinates, the integration was performed based on relevant attributes—such as administrative region IDs—using corresponding spatial data like administrative boundary shapefiles.

Once the data were merged, visualization was conducted using several techniques. Symbology settings were applied to assign different colors to each cluster, facilitating visual interpretation. Additionally, thematic maps were employed to depict regions using colors or symbols that represent their respective clusters.

The final stage encompassed the analysis and interpretation of the resulting maps. This involved identifying specific spatial patterns, recognizing distinct geographic distributions, and characterizing each cluster based on the clustering outcomes. As such, the spatial visualization provided a deeper understanding of the structural and geographic distribution of the data.

3. Results

Based on the Principal Component Analysis (PCA) conducted using SPSS version 27, the extraction reduced the original 11 variables into only 4 components. This reduction is indicated by the total initial eigenvalues greater than 1, as presented in Table 1.

Table 1. Principal component extraction result

Component

Initial Eigenvalues

Total

% of Variance

Cumulative %

1

3.726

33.876

33.876

2

2.593

23.573

57.450

3

1.963

17.850

75.299

4

1.506

13.694

88.993

5

0.425

3.863

92.857

6

0.344

3.123

95.980

7

0.301

2.740

98.720

8

0.064

0.579

99.299

9

0.046

0.421

99.720

10

0.031

0.280

100.000

11

-1.249E-16

-1.135E-15

100.000

Components with initial eigenvalues greater than 1 are considered to contribute significantly to the total variance of the data, whereas components with eigenvalues less than 1 are regarded as less informative and can be disregarded. In general, the larger the eigenvalue of a component, the greater the proportion of variance it explains. An eigenvalue greater than 1 indicates that the component accounts for more variance than a single original variable [13]. This conclusion is further supported by the scree plot presented in Figure 2.

It can be observed that the scree plot displays a steep decline from components 1 to 4, while components 5 and beyond show a more gradual slope after the elbow point. According to the scree plot criterion, only components 1, 2, 3, and 4 are considered to represent the data structure [14, 15]. To determine which variables load onto each of these four principal components, the Rotated Component Matrix is used, as presented in Table 2.

Figure 2. Scree plot

Table 2. Rotated component matrix

Rotated Component Matrixa

Variable

Principal Component (PC)

1

2

3

4

Population density

0.006

0.874

0.007

0.018

Built-Up area percentage

-0.036

0.969

-0.044

0.015

Urban facilities

0.009

0.941

0.010

-0.014

Outermost region

-0.006

-0.011

0.992

-0.022

Distance from National Border

-0.031

0.010

-0.989

-0.066

Island size

0.217

0.010

0.021

0.964

Island category

0.198

0.010

0.024

0.967

Marine utilization

0.817

-0.006

0.006

0.227

Directly Adjacent to the Sea

0.961

-0.012

0.008

0.116

Without a Coastline

-0.961

0.012

-0.008

-0.116

Village Location within Forest Areas

-0.823

-0.006

-0.012

-0.085

a. Rotation converged in 4 iterations.

The Rotated Component Matrix illustrates how the original variables are projected onto the principal components after the rotation process. This rotation aims to facilitate the interpretation of components by producing a clearer and more distinct loading pattern across variables. In this matrix, each element represents a loading value ranging from -1 to 1, which indicates the extent to which a variable contributes to a given component. The greater the absolute value of the loading—whether positive or negative—the greater the contribution of that variable [16, 17].

Table 2 shows that the highest loading values for Principal Component 1 (PC-1) are found in the variables “Directly Adjacent to the Sea” (0.961), “Marine Utilization” (0.817), “Without a Coastline” (-0.961), and “Village Location within Forest Areas” (-0.823). For PC-2, the three variables with the highest loadings are “Population Density” (0.874), “Built-up Area Percentage” (0.969), and “Urban Facilities” (0.941). In PC-3, the highest loadings are observed in the variables “Outermost Region” (0.992) and “Distance from National Border” (-0.989). Lastly, for PC-4, the variables with the highest loading values are “Island Size” (0.964) and “Island Category” (0.967).

Subsequently, the naming of the principal components was conducted to assign attributes to each component. The naming was done purposively to represent each component based on the characteristics of the grouped variables. Accordingly, Component 1 was labeled “Coastal,” Component 2 as “Urban,” Component 3 as “Outermost/Border,” and Component 4 as “Small Islands.” These component names and groupings are further detailed in Table 3.

Table 3. Principal component

Variable

Principal Component

Name

Marine utilization

PC-1

Coastal

Directly Adjacent to the Sea

Without a Coastline

Village Location within Forest Areas

Population density

PC-2

Urban

Built-Up area percentage

Urban facilities

Outermost region

PC-3

Outermost / Border

Distance from National Border

Island size

PC-4

Small Islands

Island category

Based on the interpretation of the principal components, clustering was subsequently performed using the K-Means method with five clusters. The number of clusters was determined using the Elbow Plot, which showed a sharp decline in the Within-Cluster Sum of Squares (WSS) from the second to the fifth cluster. Beyond the fifth cluster, the decrease in WSS became marginal, indicating that adding more clusters would no longer be efficient. This is further illustrated in the Elbow Plot shown in Figure 3.

Figure 3. Elbow plot for determining the number of clusters

The results are presented through the Final Cluster Centers, as shown in Table 4.

Table 4. K-Means Clustering results from principal components

Final Cluster Centers

Cluster

Principal Component

Coastal

Urban

Outermost / Border

Small Islands

1

0.871

-0.319

-0.993

-1.053

2

-2.536

-0.259

-1.000

-0.307

3

-0.010

-0.320

1.111

-0.021

4

0.028

2.907

0.041

-0.042

5

0.518

-0.269

-0.929

2.296

ANOVA

F

3743

2413

18038

11000

Sig

0.000

0.000

0.000

0.000

The interpretation of Table 4 is as follows:

Cluster 1 shows a positive final cluster center value of 0.871 for the Coastal component, while the values for the other three components are negative. This indicates that Cluster 1 primarily consists of villages located in coastal areas, but not in urban zones, outer/border areas, or small islands.

Cluster 2 exhibits negative final cluster center values across all four components. This suggests that the villages in this cluster are not coastal, not located in urban settings, not positioned in outer/border regions, and are not situated on small islands—essentially representing non-coastal and non-urban settlements with minimal spatial distinctiveness.

In Cluster 3, the highest and only positive final cluster center value is observed in the Outermost/Border component, with a score of 1.111. This clearly indicates that Cluster 3 is composed of villages situated in the outermost or border regions of the country.

Cluster 4 is characterized by a highly positive final cluster center value in the Urban component (2.907), while the values in the remaining components are negligible or negative. This reflects that Cluster 4 consists of villages located within urban zones.

Lastly, Cluster 5 shows its highest positive score in the Small Islands component (2.296), indicating that the villages grouped in this cluster are primarily located on small islands.

Furthermore, the ANOVA test results demonstrate statistically significant differences across the clusters for all four principal components, as evidenced by the significance values (p = 0.000). This confirms that the clusters are meaningfully distinct from one another in terms of their underlying spatial and typological characteristics.

In summary, the five resulting clusters represent five distinct village typologies in the Maluku Province, namely:

Coastal Typology, consisting of villages located in coastal areas;

Non-Coastal Typology, consisting of inland villages not characterized by specific spatial features;

Outermost/Border Typology, composed of villages located in the outermost or border areas of the country;

Urban Zone Typology, comprising villages situated within urban areas; and

Small Islands Typology, representing villages located on small islands.

The spatial distribution and classification of these five village typologies in Maluku Province, derived from Principal Component Analysis and K-Means Clustering, are visually illustrated in Figure 4.

Figure 4. Profile plot based on PCA and K-Means Clustering

The village typologies in this study refer to the classification of villages based on similarities in specific characteristics, particularly spatial, geographic, and socio-economic attributes. Each group or cluster consists of villages that share common features, while these features are distinct and differentiable across clusters.

Table 5 presents the number of cases in each cluster, which is an essential part of the K-Means Clustering output, indicating the number of villages assigned to each cluster. In this table, a total of 1,233 villages in Maluku Province are distributed into five distinct groups or clusters, forming village typologies based on spatial characteristics, geographic positioning, and socio-economic aspects of each village.

Table 5. Number of cases in each cluster

Cluster

Number of Members

Village

Percent (%)

Coastal

298

24

Non-Coastal

137

11

Outer/ Border

522

42

Urban Zone

116

10

Small Islands

160

13

Valid

1233

100

Missing

0

0

The clustering process above resulted in five village typologies based on their characteristic attributes. These typologies are not solely determined by geographic proximity or administrative boundaries, but also by similarities in spatial patterns, configurations, and socio-economic aspects. Consequently, villages located far apart geographically may belong to the same cluster if they share similar characteristics. Conversely, villages that are geographically close or located within the same administrative region may fall into different clusters if their typological features differ.

Table 6 summarizes the village typologies in relation to the similarity of features or characteristics associated with each typology, along with the number of administrative regions (districts/regencies) represented within each cluster or typology.

Table 6. Aspects of typology and number of district

Cluster/ Typology

Aspects

Number of District

Coastal

Spatial pattern

6

Non Coastal

Spatial pattern

6

Outer/ Border

Geographic location

5

Urban Zone

Socio-economic

11

Small Islands

Spatial form

4

It is evident that the village typologies transcend administrative and geographic boundaries. The Urban Zone typology, for instance, spans all 11 regencies/municipalities in Maluku Province. This indicates that villages classified under the Urban Zone typology are not concentrated in a single area but are distributed across the entire province. Similarly, other typologies also extend across multiple administrative regions: the Coastal typology covers 6 regencies, Non-Coastal typology spans 6 regencies, Outermost/Border typology includes 5 regencies, and the Small Islands typology is represented in 4 regencies.

Figure 5 illustrates the spatial distribution of village typologies across the archipelagic territory of Maluku Province. With the assignment of codes to each typology, code C is the Coastal, code NC is the Non-coastal, code OB is Outer/border, code U is Urban and code SI is small island.

Figure 5. Map of village typology in Maluku, Indonesia (Appendix Table 1 Part A-G)

4. Discussion and Conclusions

The regional clustering that resulted in the five village typologies in this study differs from the existing “Island Cluster” concept previously adopted in Maluku Province, which classifies the region into 12 island clusters. The basis for that classification is primarily geographical, where islands located in close proximity within defined geographic boundaries are grouped into one cluster, and subsequent groups are formed based on successive geographic boundaries—resulting in a total of 12 clusters. However, this approach does not adequately account for the diversity of spatial characteristics or the socio-economic conditions within each cluster. In principle, this form of regional classification is not significantly different from administrative divisions such as regencies/municipalities or sub-districts. In fact, in several clusters, it is difficult to distinguish between the boundaries of the island cluster and those of existing administrative regions. As a result, the practical implementation of the Island Cluster concept in more targeted policy frameworks has proven difficult, particularly in addressing the specific and objective challenges faced by island communities.

In contrast, the typology model developed in this study is more scientifically robust and policy-relevant, as it incorporates the multi-dimensional nature of island regions—encompassing geographic, spatial, and socio-economic dimensions. This approach aligns with findings from prior research that emphasize the importance of combining spatial and socio-economic indicators to construct meaningful classifications of rural and island settlements [18-20]. Furthermore, by focusing the unit of analysis at the village level, the typologies produced in this study offer greater precision and practical utility, as supported by Li et al. [21], who emphasized the need for high-resolution spatial and functional categorization in rural planning.

In this study, each area was grouped based on similarities in these attributes, resulting in five typologies collectively referred to as Island Village Typologies, namely:

Coastal Typology, comprising villages located in coastal areas

Non-Coastal Typology, consisting of inland villages not adjacent to the sea

Outermost/Border Typology, including villages situated in the outermost regions or national border zones

Urban Zone Typology, consisting of villages located in urban settings

Small Islands Typology, representing villages located on small islands.

The identification of these five Island Village Typologies is expected to support policymakers in formulating more precise, equitable, and sustainable development strategies. For instance, development strategies appropriate for the Non-Coastal Typology may differ significantly from those required in the Coastal Typology or the Small Islands Typology. Likewise, policies designed for urban village development cannot be uniformly applied to villages within the Outermost/Border Typology. Each typology has its own unique characteristics, necessitating distinct policy approaches aligned with their specific potentials, needs, and development challenges.

Ultimately, it is hoped that the findings of this study will contribute to the enrichment of knowledge and understanding regarding the typologies and characteristics of island regions and their inherent diversity. Practically, this research is expected to serve as a useful reference for designing various programs, policies, and regional development strategies—particularly those targeting village development in archipelagic regions.

Villages classified under the Coastal typology require policies that emphasize strengthening coastal resilience through the protection of erosion-prone areas, the development of marine and fisheries-based economies, as well as improved market access and supporting infrastructure such as cold storage facilities and fishing ports.

While Non-Coastal villages clearly demand greater attention to improving road infrastructure, access to basic services, and the promotion of sustainable agricultural practices.

For villages categorized as Small Islands, policy focus should be directed toward enhancing inter-island connectivity, providing access to renewable energy, fostering environmentally sustainable economic development, and increasing access to essential services such as education and healthcare.

Villages within the Urban Zone typology also face their own unique challenges, including land conversion, high population density, and increased demand for services. Therefore, appropriate policies should focus on spatial planning, public service digitalization, and the development of service sectors and creative industries.

Meanwhile, the Outer/Border typology requires a strategic policy approach, as these villages represent the frontline of the nation's territory, yet often remain marginalized and underdeveloped. In addition to strengthening territorial defense and security functions, there is a pressing need for basic infrastructure development, improved connectivity, and the provision of integrated public services.

Ultimately, it is hoped that the findings of this study can contribute to a broader understanding of the types and characteristics of island regions and their diversity. Practically, the results may serve as a valuable reference for the formulation of programs, policies, and development planning strategies, particularly for village development in archipelagic regions.

5. Research Limitations

This study has several limitations that should be acknowledged to clarify the scope of the analysis and to encourage caution in interpreting the findings. These limitations are outlined as follows:

Temporal Scope: This study is based on data from the year 2021. Therefore, all conclusions drawn are descriptive of that particular period and do not reflect temporal dynamics or changes in village typologies over time.

Unit of Analysis: The unit of analysis used is the village. While spatial granularity at the village level provides a strong advantage in capturing local diversity, it also presents challenges related to data gaps or incompleteness for certain indicators. As such, variable selection and observation units were carefully chosen to ensure representativeness and reliability.

Geographical Scope: The scope of this study is explicitly limited to Maluku Province. The resulting classification and typological characteristics of villages are not intended to be generalized to other provinces, especially those with significantly different geographical conditions.

Methodological Approach: This study employs exploratory statistical methods, namely PCA and K-Means Clustering. These methods were selected to identify latent typological structures based on geospatial and socio-economic variables in a data-driven manner. However, due to limited availability and completeness of ideal variables at the village level, the selection of variables was guided by considerations of data availability and consistency. This may influence the scope of indicators included in the classification model.

Nature of the Typology: Although the resulting clusters show meaningful spatial differentiation, the classification should not be regarded as final or absolute. The typology produced is indicative in nature. Therefore, further policy validation or field studies are needed to confirm the relevance and accuracy of the classifications.

By acknowledging these limitations, this study is expected to serve as an initial foundation for formulating archipelagic village typology-based policies, while leaving room for refinement through expanded datasets and more advanced analytical approaches.

Appendix

Appendix Table 1. Village typology in Maluku Province- part A

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

1

Abat

OB118

51

Aran

SI74

101

Batuasa

C227

151

Disuk

OB353

2

Abean

OB334

52

Arewang

SI75

102

Batugajah

OB227

152

Doka Barat

OB12

3

Abio Ahiolo

NC99

53

Argam

SI76

103

Batugoyang

OB6

153

Doka Timur

OB13

4

Aboru

SI10

54

Ariate

C169

104

Batuley

OB7

154

Dosimar

OB14

5

Abubu

SI11

55

Arma

OB128

105

Batumiau

OB228

155

Dosinamalau

OB15

6

Abulate

C215

56

Armada

SI77

106

Bebar Timur

OB229

156

Dreamland Hills

NC126

7

Abusur

OB220

57

Arnau

OB223

107

Bellis

C228

157

Dudunwahan

OB354

8

Ad Ngurwul

OB335

58

Aroa Kataloka

SI78

108

Beltubur

OB8

158

Dulak

SI84

9

Ad Ohoiwaf

OB336

59

Arso

OB338

109

Bemo

C229

159

Dullah

OB194

10

Ad Wear Aur

OB337

60

Artafela

NC124

110

Bemo Perak

C230

160

Dullah Laut

OB195

11

Adabai

C216

61

Aruan Gaur

C223

111

Bemun

OB9

161

Durjela

OB16

12

Adar

SI69

62

Arui Bab

OB129

112

Benjina

OB10

162

Duryar Rumoy

SI85

13

Adaut

OB119

63

Arui Das

OB130

113

Benjuring

OB11

163

Dwiwarna

U66

14

Adodo Fordata

OB120

64

Arwala

OB224

114

Benteng

U22

164

Effa

SI86

15

Adodo Molu

OB121

65

Asilulu

C103

115

Besi

C104

165

El Ralang

OB355

16

Afang Defol

C217

66

Atiahu

C224

116

Biloro

C46

166

Elaar Lamagorang

OB356

17

Afang Kota

C218

67

Atubul Da

OB131

117

Bitorik

C231

167

Elaar Let

OB357

18

Ahanari

OB221

68

Atubul Dol

OB132

118

Boinfia

C232

168

Elaar Ngursoin

OB358

19

Ahusen

U16

69

Awear

OB133

119

Boiyauw

SI14

169

Elara

SI1

20

Ainena

C219

70

Awear Rumngeur

OB134

120

Bomaki

OB136

170

Elat

OB359

21

Air Besar

C100

71

Awilinan

C2

121

Bombay

OB342

171

Elemata

NC60

22

Air Buaya

C1

72

Babiotang

OB225

122

Booi

SI15

172

Elfule

C47

23

Air Nanang

C220

73

Bala-bala

C41

123

Buan Kataloka

SI81

173

Eliasa

OB137

24

Air Ternate

C40

74

Balatan

OB3

124

Buano Hatuputih

SI57

174

Elnusa

C237

25

Airkasar

C221

75

Balbalu

NC1

125

Buano Selatan

SI58

175

Elo

OB231

26

Akatfadedo

SI70

76

Balpetu

C42

126

Buano Utara

SI59

176

Elpaputih

C170

27

Aketernate

C101

77

Banda Baru

NC59

127

Bula

U111

177

Elsulith

OB232

28

Aki Jaya

NC123

78

Banda Efruan

OB339

128

Bula Air Fatolo

C233

178

Ema

NC56

29

Akoon

SI12

79

Banda Eli

OB340

129

Bululora

OB230

179

Emguhen

C48

30

Algadang

OB1

80

Banda Suku Tigapuluh

OB341

130

Bumey

U65

180

Emplawas

OB233

31

Allang

C102

81

Banggoi

C225

131

Buria

NC100

181

Englas

C238

32

Allang Asaude

C168

82

Banggoi Pancorang

C226

132

Combir Kasestoren

SI16

182

Eray

OB234

33

Alusi Batjasi

OB122

83

Bara

C3

133

Dada Kataloka

SI82

183

Erersin

OB17

34

Alusi Bukjalim

OB123

84

Bardefan

OB4

134

Daftel

OB343

184

Erwiri

C49

35

Alusi Kelaan

OB124

85

Bas

SI79

135

Danama

C234

185

Etaralu

SI87

36

Alusi Krawain

OB125

86

Basada

OB5

136

Danar Lumefar

OB344

186

Eti

U102

37

Alusi Tamrian

OB126

87

Basalale

NC2

137

Danar Ohoiseb

OB345

187

Evu

OB360

38

Amahai

U63

88

Basarin

SI80

138

Danar Ternate

OB346

188

Faa

OB361

39

Amahusu

U17

89

Bati Kilwouw

NC125

139

Dangarat

OB347

189

Faan

OB362

40

Amantelu

U18

90

Batlale

NC3

140

Dava

NC4

190

Fakal

NC39

41

Amarlaut

SI71

91

Batu Boy

C4

141

Dawang

C235

191

Fako

OB363

42

Amarsekaru

SI72

92

Batu Gajah

U19

142

Day

SI83

192

Fangamas

OB364

43

Amarwatu

SI73

93

Batu Jungku

C5

143

Debowae

NC5

193

Fanwav

OB365

44

Amdasa

OB127

94

Batu Kasa

C43

144

Debut

OB348

194

Fatlabata

OB18

45

Ameth

NC58

95

Batu Layar

C44

145

Dender

SI17

195

Fatmite

C50

46

Ameth

SI13

96

Batu Meja

U20

146

Denwet

OB349

196

Fattolo

C239

47

Ampera

U64

97

Batu Merah

OB226

147

Depur

OB350

197

Fatural

OB19

48

Analutur

OB222

98

Batu Merah

U21

148

Dian Darat

OB351

198

Feer

OB366

49

Angar

C222

99

Batu Putih

OB135

149

Dian Pulau

OB352

199

Feruni

OB20

50

Apara

OB2

100

Batu Tulis

C45

150

Dihil

C236

200

Fiditan

OB196

Appendix Table 1. Village typology in Maluku Province- part B

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

201

Finualen

OB197

251

Hatuolo

NC62

301

Ilpokil

OB244

351

Kampung Baru

C248

202

Fogi

C51

252

Hatusua

C172

302

Ilputih

OB245

352

Kampung Baru

U70

203

Foket

OB21

253

Haya

C109

303

Ilwaki

U60

353

Kampung Baru

SI2

204

Funa Naibaya

C240

254

Herlau Pauni

C110

304

Ilway

OB246

354

Kampung Baru

SI93

205

Fursuy

OB138

255

Herley

OB235

305

Imroing

OB247

355

Kampung Gorom

C249

206

Gah

C241

256

Hertuti

OB236

306

Irloy

OB32

356

Kampung Tengah Wermaf

SI94

207

Gaimar

OB22

257

Hiay

OB237

307

Iso

OB385

357

Kampung Wailola

U113

208

Galai Dubu

U8

258

Hila

OB238

308

Issu

NC64

358

Kanara

OB200

209

Galala

U23

259

Hila

U68

309

Itawaka

SI23

359

Kandar

OB142

210

Gale-gale

C105

260

Hirit

OB198

310

Jabulenga

OB33

360

Kanikeh

NC68

211

Garara

OB367

261

Hitulama

C111

311

Jakarta Baru

NC127

361

Karang Jaya

NC8

212

Gardakau

OB23

262

Hitumessing

C112

312

Jambu Air

OB34

362

Karang Panjang

U29

213

Geser

U112

263

Hoat

OB376

313

Jamilu

C8

363

Karangguli

OB48

214

Goda-Goda

OB24

264

Hokmar

OB31

314

Jelia

OB35

364

Karatat

OB143

215

Gogorea

NC6

265

Hoko

OB377

315

Jembatan Basah

NC128

365

Karawai

OB49

216

Goha

SI88

266

Hoko

OB378

316

Jerili

NC65

366

Karay

C250

217

Gomar Meti

OB25

267

Hollat

OB379

317

Jerol

OB36

367

Karbubu

OB251

218

Gomar Sungai

OB26

268

Hollat Solair

OB380

318

Jerusu

OB248

368

Karey

OB50

219

Gomo-Gomo

OB27

269

Hollay

OB381

319

Jerwatu

OB37

369

Kariu

SI26

220

Gomsey

OB28

270

Hollo

U69

320

Jikumerasa

C9

370

Karkarit

OB386

221

Gorar

OB29

271

Honipopu

U27

321

Jirlay

OB38

371

Karlokin

SI95

222

Grahwaen

C52

272

Honitetu

NC101

322

Jorang

OB39

372

Karlomin

SI96

223

Grandeng

NC7

273

Hoor Islam

OB382

323

Juring

OB40

373

Karlutu Kara

C116

224

Guliar

SI89

274

Hoor Kristen

OB383

324

Jursiang

OB41

374

Kartutin Kartenga

SI97

225

Guli-Guli

C242

275

Horale

C113

325

Kabalsiang

OB42

375

Kase

C54

226

Gulili

OB30

276

Hote

C53

326

Kabalukin

OB43

376

Kasieh

C177

227

Gunak

C243

277

Hote

C246

327

Kabauhari

NC66

377

Kataloka

U114

228

Gusalaut

C244

278

Hualoy

C173

328

Kabauw

SI24

378

Kawa

C178

229

Haar Ohoimel

OB368

279

Huaulu

NC63

329

Kabiarat

OB140

379

Keffing

SI98

230

Haar Ohoimur GPM

OB369

280

Huku Kecil

NC102

330

Kabufin

OB44

380

Kehli

OB252

231

Haar Ohoimur RK

OB370

281

Hukuanakota

NC103

331

Kaforing

SI92

381

Kelaan

OB144

232

Haar Ohoiwait

OB371

282

Hukurila

C92

332

Kahilin

OB249

382

Kelaba

C251

233

Haar Renrahantel

OB372

283

Hulaliu

SI20

333

Kaibobo

C176

383

Kelang Asaude

SI60

234

Haar Wassar

OB373

284

Hulung

C174

334

Kaibolafin

OB45

384

Kelangan

SI99

235

Halong

U24

285

Hunisi

C114

335

Kaiely

C10

385

Kelanit

OB387

236

Hangur

OB374

286

Hunuth/Durian Patah

U28

336

Kailolo

SI25

386

Keldor

SI100

237

Harangur

OB375

287

Hutumury

C93

337

Kaimear

OB199

387

Kelibingan

SI101

238

Haria

SI18

288

Iblatmuntah

OB239

338

Kairatu

U103

388

Kellu

SI102

239

Haruku

SI19

289

Ibra

OB384

339

Kaitetu

C115

389

Ker Ker

SI103

240

Haruru

U67

290

Iha

C175

340

Kaiwabar

OB46

390

Keta

C252

241

Hatalai

NC57

291

Iha

SI21

341

Kaiwatu

OB250

391

Keta Rumadan

C253

242

Hatawano

C6

292

Ihamahu

SI22

342

Kaki Air

C11

392

Ketsoblak

U56

243

Hative Besar

U25

293

Ilath

C7

343

Kalar-Kalar

OB47

393

Ketty

OB253

244

Hative Kecil

U26

294

Ilbutung

OB240

344

Kaloa

NC67

394

Kian Darat

C254

245

Hatu

C106

295

Ilih

OB241

345

Kamal

U104

395

Kian Laut

C255

246

Hatu

C107

296

Ilili

SI90

346

Kamar

C247

396

Kilalir Kilwouw

SI104

247

Hatuhenu

NC61

297

Ilili

SI91

347

Kamarian

U105

397

Kilang

C94

248

Hatuimeten

C245

298

Ilmamau

OB242

348

Kamatubun

OB141

398

Kilbat

C256

249

Hatumete

C108

299

Ilmarang

OB243

349

Kamlanglale

U6

399

Kilbon Kway

C257

250

Hatunuru

C171

300

Ilngei

OB139

350

Kampung Baru

C12

400

Kilbutak

SI105

Appendix Table 1. Village typology in Maluku Province- part C

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

401

Kilean

SI106

451

Kurwara

SI115

501

Leinitu

SI29

551

Luang Barat

OB273

402

Kileser

NC129

452

Kuwaos

C264

502

Leiting

OB66

552

Luang Timur

OB274

403

Kilfura

SI107

453

Kwarbola

OB62

503

Lekloor

OB265

553

Luhu

C183

404

Kilga Kilwouw

C258

454

Kwawor Besar Ena

SI116

504

Leksula

C55

554

Luhuely

OB275

405

Kilga Watubau

C259

455

Kwawor Besar Witau

SI117

505

Lektama

C56

555

Luhutuban

SI61

406

Kiliwouw

SI108

456

Kwawor Kecil Mata Ata

SI118

506

Leku

C57

556

Lumahlatal

C184

407

Kilkoda

SI109

457

Kwawor Kecil Mata Wawa

SI119

507

Lelang

OB266

557

Lumahpelu

C185

408

Kilmasa

OB145

458

Laar

OB390

508

Lele

NC10

558

Lumasebu

U10

409

Kilmoy

C260

459

Labelau

OB260

509

Lelingluan

OB153

559

Lumoli

NC107

410

Kilmury

C261

460

Labetawi

OB201

510

Lemanpoli

NC11

560

Lumoy

SI3

411

Kilobar

OB146

461

Labobar

OB148

511

Lena

C58

561

Lurang

OB276

412

Kiloon

OB147

462

Labuan

C118

512

Ler Ohoilim

OB394

562

Lutur

OB71

413

Kilotak

SI110

463

Labuang

U7

513

Lermatang

OB154

563

Maar

OB398

414

Kiltay

SI111

464

Lafa

C119

514

Lesane

U75

564

Madak

NC130

415

Kiltufa

SI112

465

Laha

C120

515

Lesluru

NC71

565

Madwat

OB399

416

Kilwair

OB388

466

Laha

U31

516

Letman

OB395

566

Maekor

OB72

417

Kilwaru

SI113

467

Laha Kaba

C121

517

Letmasa

OB267

567

Magat

SI124

418

Kilwat

OB389

468

Lahema

SI120

518

Letoda

OB268

568

Mahaleta

OB277

419

Klis

OB254

469

Laimu

C122

519

Letsiara

OB269

569

Mahu

SI31

420

Klishatu

OB255

470

Laininir

OB63

520

Letwaru

U76

570

Mahuan

OB278

421

Kobadangar

OB51

471

Lairngangas

OB391

521

Letwuan

OB396

571

Maijuring

OB73

422

Kobamar

OB52

472

Laitutun

OB261

522

Letwurung

OB270

572

Makariki

U79

423

Kobasel Fara

OB53

473

Lala

C13

523

Lewah

OB271

573

Makatian

OB159

424

Kobasel Timur

OB54

474

Lalasa

SI121

524

Lian Tasik

C266

574

Makububui

NC108

425

Kobi

C117

475

Lamahang

C14

525

Liang

NC40

575

Malaku

C127

426

Kobimukti

U71

476

Lamdesar Barat

OB149

526

Liang

U77

576

Maloang

C186

427

Kobisonta

U72

477

Lamdesar Timur

OB150

527

Liang

U78

577

Mamala

C128

428

Kobraur

OB55

478

Langgiar Haar

OB392

528

Liliama

C267

578

Mamur

SI125

429

Kobror

OB56

479

Langgur

U100

529

Liliboy

C125

579

Maneo Rendah

C129

430

Koijabi

OB57

480

Langhalau

OB64

530

Limumir

U115

580

Maneoratu

C130

431

Kokroman

U73

481

Lapang Kampung Jawa

SI122

531

Lingada

OB155

581

Mangeswaen

NC41

432

Kokwari

OB256

482

Lapela

C265

532

Lingat

OB156

582

Mangga Dua

U35

433

Kolaha

OB58

483

Larat

OB393

533

Lisabata

C181

583

Manggis

C268

434

Kolamar

OB59

484

Larike

C123

534

Lisabata Timur

C126

584

Manglusi

OB160

435

Kolser

U99

485

Latalola Besar

OB262

535

Lodar El

U57

585

Manjau

OB74

436

Kompane

OB60

486

Latalola Kecil

OB263

536

Lohiasapalewa

NC105

586

Manusa

NC109

437

Kota Lama

SI9

487

Latdalam

OB151

537

Lohiatala

NC106

587

Manusela

NC73

438

Kota Sirih

OB522

488

Latea

C124

538

Lokki

C182

588

Manuweri

OB279

439

Kroing

OB257

489

Lateri

U32

539

Loko

SI123

589

Maraina

NC74

440

Kuaimelu

OB258

490

Latta

U33

540

Lokwirin

OB202

590

Marantutul

OB161

441

Kubalahin

NC9

491

Latu

C180

541

Lola

OB67

591

Marasahua

NC75

442

Kudamati

U30

492

Latuhalat

U34

542

Lolotuara

OB272

592

Marfenfen

OB75

443

Kufar

C262

493

Laturake

NC104

543

Longgar

OB68

593

Marfun

OB400

444

Kulugowa

SI114

494

Lau-Lau

OB65

544

Lonthoir

SI30

594

Mariri

OB76

445

Kulur

C179

495

Lauran

OB152

545

Loon

OB397

595

Maririmar

OB77

446

Kulur

SI27

496

Lautang

SI28

546

Loping Mulyo

NC72

596

Marlasi

OB78

447

Kumelang

C263

497

Lawawang

OB264

547

Lorang

OB69

597

Marsela

OB280

448

Kumul

OB61

498

Layeni

U74

548

Lor-lor

OB70

598

Masapun

OB281

449

Kumur

OB259

499

Leahari

C95

549

Lorulun

OB157

599

Masarete

C15

450

Kuralele

NC69

500

Leaway

NC70

550

Lorwembun

OB158

600

Masawoy

SI4

Appendix Table 1. Village typology in Maluku Province- part D

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

601

Masawoy

SI62

651

Nakupia

NC78

701

Nuniali

C192

751

Osong

C273

602

Masihulan

NC76

652

Nalahia

SI33

702

Nura

OB288

752

Otademan

SI137

603

Masnana

C59

653

Nalbessy

C61

703

Nurkat

OB166

753

Ouw

SI36

604

Masrum

U58

654

Nama Andan

SI134

704

Nurnyaman

OB289

754

Paa

C136

605

Mastur

OB401

655

Nama Lena

SI135

705

Nuruwe

C193

755

Pandan Kasturi

U39

606

Mastur Baru

OB402

656

Namaelo

U81

706

Nusaniwe

C97

756

Papakula

OB88

607

Mataholat

OB403

657

Namalean

SI136

707

Nusaniwe

U38

757

Paperu

SI37

608

Matakus

OB162

658

Namar

OB412

708

Nusantara

U83

758

Parbulu

NC14

609

Matapa

C187

659

Namara

OB85

709

Nusarua

NC44

759

Pasahari

C137

610

Matwair

OB404

660

Namasina

U82

710

Nusiata

OB290

760

Pasanea

C138

611

Mepa

C60

661

Namlea

U1

711

Nuweletetu

NC81

761

Pasinalo

C194

612

Merdeka

SI32

662

Namlea Ilath

C16

712

Nuwewang

OB291

762

Pasir Putih

SI5

613

Meror

OB79

663

Namrinat

NC42

713

Ohilahin

NC13

763

Passo

U40

614

Mesiang

OB80

664

Namsina

C17

714

Ohoibadar

OB427

764

Patahuwe

C195

615

Mesidang

OB81

665

Namtabung

OB165

715

Ohoider Atas

OB428

765

Patti

OB294

616

Messa

NC77

666

Namto

NC79

716

Ohoidertawun

OB429

766

Pela

C18

617

Meyano Das

OB163

667

Nanali

C62

717

Ohoidertom

OB430

767

Pelauw

U84

618

Meyano Das

OB164

668

Nania

U36

718

Ohoidertutu

OB431

768

Perik Basaranggi

SI138

619

Mida

SI126

669

Naumatang

OB286

719

Ohoiel

OB432

769

PIliana

NC82

620

Miran

SI127

670

Nayet

C271

720

Ohoifaruan

OB433

770

Piru

U107

621

Miran Gota

SI128

671

Neath

NC43

721

Ohoifau

OB434

771

Pohon Batu

C65

622

Miran Keledar

SI129

672

Negeri Lama

U37

722

Ohoijang Watdek

U101

772

Poka

U41

623

Miran Kilian

SI130

673

Negeri Lima

C133

723

Ohoilean

OB435

773

Polin

C274

624

Miran Manaban

SI131

674

Nekan

C272

724

Ohoililir

OB436

774

Ponom

OB89

625

Miran Rumuar

SI132

675

Neniari

NC111

725

Ohoilim

OB437

775

Popjetur

OB90

626

Mising

C269

676

Nerong

OB413

726

Ohoiluk

OB438

776

Porto

SI38

627

Moain

OB282

677

Ngabub

OB414

727

Ohoilus

OB439

777

Pota Besar

OB295

628

Mohongsel

OB82

678

Ngadi

OB203

728

Ohoimajang

OB440

778

Pota Kecil

OB296

629

Moning

OB283

679

Ngafan

OB415

729

Ohoinangan

OB441

779

Pulau Ay

SI39

630

Morekau

NC110

680

Ngaibor

OB86

730

Ohoinangan Atas

OB442

780

Pulau Hatta

SI40

631

Morella

C131

681

Ngaiguli

OB87

731

Ohoinol

OB443

781

Pulau Panjang

SI139

632

Morokai

U80

682

Ngan

OB416

732

Ohoira

OB444

782

Pulau Rhun

SI41

633

Mosso

C132

683

Ngat

OB417

733

Ohoiraut

OB445

783

Pupliora

OB297

634

Mugusinis

SI133

684

Ngayub

OB418

734

Ohoiren

OB446

784

Purpura

OB298

635

Mun Essoy

OB405

685

Ngefuit

OB419

735

Ohoirenan

OB447

785

Rahangiar

OB452

636

Mun Kahar

OB406

686

Ngefuit Atas

OB420

736

Ohoitahit

OB205

786

Rahareng

OB453

637

Mun Ngurditwain

OB407

687

Ngilngof

OB421

737

Ohoitel

OB206

787

Rahareng Atas

OB454

638

Mun Ohoiir

OB408

688

Ngurdu

OB422

738

Ohoituf

OB448

788

Raheriat

NC15

639

Mun Ohoitadiun

OB409

689

Ngurko

OB423

739

Ohoiwait

OB449

789

Rajawali

SI42

640

Mun Werfan

OB410

690

Ngursit

OB424

740

Ohoiwang

OB450

790

Rambatu

NC113

641

Murai

OB83

691

Ngurwalek

OB425

741

Ohoiwirin

OB451

791

Rarat

SI140

642

Murnaten

C188

692

Ngurwul

OB426

742

Oirata Barat

OB292

792

Rat

OB455

643

Musihuwey

C189

693

Niela

OB204

743

Oirata Timur

OB293

793

Rebi

OB91

644

Nabaheng

OB411

694

Nikulukan

C190

744

Oki Baru

C63

794

Regoha

OB299

645

Nabar

OB284

695

Niniari

NC112

745

Oki Lama

C64

795

Renfaan GPM

OB456

646

Nafar

OB84

696

Niwelehu

U106

746

Olilit Raya

OB167

796

Renfaan Islam

OB457

647

Nafrua

NC12

697

Nolloth

SI34

747

Olong

C134

797

Renfan

OB458

648

Naiwel Ahinulin

C270

698

Nomaha

OB287

748

Oma

SI35

798

Rerean

OB459

649

Nakarhamto

OB285

699

Nua Nea

NC80

749

Ondor

U116

799

Rewav

OB460

650

Naku

C96

700

Nukuhai

C191

750

Oping

C135

800

Reyamru

OB461

Appendix Table 1. Village typology in Maluku Province- part E

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

801

Ridool

U11

851

Saparua

U86

901

Siri Sori Islam

SI47

951

Tasinwaha

OB101

802

Rijali

U42

852

Sare

OB464

902

Sitniohoi

OB470

952

Tawiri

U46

803

Riring

NC114

853

Sariputih

NC84

903

Siwa Lima

U9

953

Tayando Langgiar

OB212

804

Ritabel

U12

854

Sathean

OB465

904

Siwar

SI7

954

Tayando Ohoiel

OB213

805

Roho

NC83

855

Sather

OB466

905

Siwatlahin

NC45

955

Tayando Yamru

OB214

806

Rohomoni

SI43

856

Saumlaki

U13

906

Siya

OB98

956

Tayando Yamtel

OB215

807

Romdara

OB300

857

Saumlaki Utara

U14

907

Skikilale

NC17

957

Tehoru

U92

808

Romean

OB168

858

Saunulu

C145

908

Slealale

NC46

958

Tehua

C153

809

Romnus

OB169

859

Savana Jaya

C21

909

Soahuku

C151

959

Teineman

OB175

810

Rotnama

OB301

860

Sawa

C22

910

Sofyanin

OB174

960

Tela

OB309

811

Ruku Ruku

SI141

861

Sawai

U87

911

Sohuwe

C201

961

Telalora

OB310

812

Rukun Jaya

NC131

862

Seakasale

C198

912

Soin

OB471

962

Telemar

OB311

813

Ruma Durun

SI142

863

Sehati

C146

913

Soindat

OB472

963

Telutih Baru

C154

814

Rumaat

OB462

864

Seilale

C99

914

Soinrat

OB473

964

Tenbuk

OB478

815

Rumadian

OB463

865

Seith

C23

915

Solang

C284

965

Tengah Tengah

C155

816

Rumah Tiga

U43

866

Seith

C147

916

Solath

OB308

966

Teor

SI152

817

Rumahkay

C196

867

Sekat

C66

917

Sole

SI63

967

Tepa

OB312

818

Rumahlewang Besar

OB302

868

Selamon

SI45

918

Solea

NC85

968

Terkuri

C69

819

Rumahlewang Kecil

OB303

869

Selasi

SI6

919

Solea

NC117

969

Tetoat

OB479

820

Rumahsalut

OB170

870

Selayar

OB467

920

Somlain

OB474

970

Themin

OB176

821

Rumahsoal

NC115

871

Selibata-bata

OB94

921

Soya

U45

971

Tiakur

U61

822

Rumahsokat

C139

872

Selilau

OB95

922

Sukaraja

C202

972

Tial

C156

823

Rumahwey

C140

873

Selmona

OB96

923

Suli

U90

973

Tiflen

OB216

824

Rumanama Kotawouw Kataloka

SI143

874

Selor

C280

924

Sumbawa

C285

974

Tifu

C70

825

Rumberu

NC116

875

Selwadu

NC16

925

Sumber Agung

NC133

975

Tifu

NC18

826

Rumeon

SI144

876

Semawi

OB468

926

Sumeith Pasinaro

NC118

976

Tihu

U47

827

Rumfakar

C275

877

Sepa

C148

927

Suru

C286

977

Tihuana

NC87

828

Rumkisar

OB304

878

Sera

OB305

928

Taa

C287

978

Tihulale

U108

829

Rumngeur

OB171

879

Sera

SI146

929

Taar

OB209

979

Tikbary

C71

830

Rumoga

NC132

880

Seriholo

C199

930

Tabarfane

OB99

980

Tinarin

SI153

831

Rumoin

OB207

881

Serili

OB306

931

Tahalupu

SI64

981

Tiouw

SI49

832

Rutah

C141

882

Sermaf

OB208

932

Tala

C203

982

Titawaai

SI50

833

Rutong

C98

883

Seruawan

C200

933

Tam Ngurhir

OB210

983

Tobo

C290

834

Sabuai

C276

884

Sesar

C281

934

Tamangil Nuhuten

OB475

984

Tomalehu

C205

835

Sagey

SI145

885

Sesar

C282

935

Tamangil Nuhuyanat

OB476

985

Tomalehu Barat

SI65

836

Sahulauw

C142

886

Seti

C149

936

Tamedan

OB211

986

Tomalehu Timur

SI66

837

Salagor Air

C277

887

Sewer

OB97

937

Tamher Timur

SI148

987

Tomliapat

OB313

838

Salagor Kota

C278

888

Siahoni

C24

938

Tamher Warat

SI149

988

Tomra

OB314

839

Salamahu

C143

889

Siatele

C150

939

Tamilouw

C152

989

Tonu Jaya

SI67

840

Salarem

OB92

890

Sifluru

U88

940

Tana Soa

SI150

990

Tounussa

NC119

841

Salas

C279

891

Sifnana

U15

941

Tanah Baru

SI151

991

Tounwawan

OB315

842

Saleman

C144

892

Sikaro Kataloka

SI147

942

Tanah Merah

NC86

992

Trana

NC88

843

Samal

U85

893

Sila

SI46

943

Tanah Miring

OB100

993

Trukat

NC47

844

Samalagi

C19

894

Silale

U44

944

Tanah Rata

SI48

994

Tual

U59

845

Samang

OB93

895

Silohan

C283

945

Tananahu

U91

995

Tubir Wasiwang

NC134

846

Sameth

SI44

896

Simi

C67

946

Tanimbar Kei

OB477

996

Tuburlay

OB480

847

Sanahu

C197

897

Sinairusi

OB307

947

Taniwel

C204

997

Tuburngil

OB481

848

Sangliat Dol

OB172

898

Siopot

C68

948

Tanjung Karang

C25

998

Tubyal

OB217

849

Sangliat Krawain

OB173

899

Sirbante

OB469

949

Tansi Ambon

C288

999

Tuha

SI154

850

Sanleko

C20

900

Siri Sori Amalatu

U89

950

Taruy

C289

1000

Tuhaha

SI51

Appendix Table 1. Village typology in Maluku Province- part F

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

1001

Tulehu

U93

1051

Waefusi

C72

1101

Wafol

OB494

1151

Waplau

C37

1002

Tum

C291

1052

Waegeren

NC21

1102

Wahai

U95

1152

Waprea

C38

1003

Tumbur

OB177

1053

Waeha

C73

1103

Wahangula-Ngula

OB106

1153

Wapsalit

NC35

1004

Tunas Ilur

SI155

1054

Waehaka

C74

1104

Wahaolon

NC54

1154

Warabal

OB112

1005

Tungu

OB102

1055

Waehata

NC22

1105

Wahayum

OB107

1155

Waraka

C162

1006

Tunguwatu

OB103

1056

Waekasar

U2

1106

Waifual

OB108

1156

Waraloin

C213

1007

Tuniwara

SI68

1057

Waekatin

NC49

1107

Waihaong

U51

1157

Warasiwa

C163

1008

Tunsai

C292

1058

Waekeka

C75

1108

Waihatu

U109

1158

Waras-Waras

C295

1009

Tutrean

OB482

1059

Waeken

NC50

1109

Waiheru

U52

1159

Warbal

OB498

1010

Tutukembong

OB178

1060

Waekerta

NC23

1110

Waihoka

U53

1160

Waria

OB113

1011

Tutukey

OB316

1061

Waekose

C27

1111

Waiketam Baru

NC136

1161

Warialau

OB114

1012

Tutunametal

OB179

1062

Waelana-lana

NC24

1112

Wailay

OB109

1162

Warjukur

OB115

1013

Tutuwaru

OB317

1063

Waelapia

C28

1113

Wailoping

U96

1163

Warkar

OB218

1014

Tutuwawang

OB318

1064

Waeleman

NC25

1114

Wailulu

C159

1164

Warloy

OB116

1015

Uat

OB483

1065

Waelihang

NC26

1115

Waimital

U110

1165

Waru

C296

1016

Ubung

C26

1066

Waelikut

C76

1116

Waimusal

NC90

1166

Waru

U97

1017

Udar

OB484

1067

Waelo

NC27

1117

Waimusi

NC91

1167

Warwut

OB499

1018

Uf

OB485

1068

Waelo

NC51

1118

Wain

OB495

1168

Wasarili

OB324

1019

Uhak

OB319

1069

Waemala

C77

1119

Wain Baru

OB496

1169

Wasbaka

NC36

1020

Ujir

OB104

1070

Waemangit

C29

1120

Wainitu

U54

1170

Wasi

NC37

1021

Ulahahan

C157

1071

Waemasing

C78

1121

Waipirit

C208

1171

Wasia

C214

1022

Ulima

SI8

1072

Waematakabo

NC135

1122

Waiputih

NC92

1172

Waspait

C39

1023

Ullath

SI52

1073

Waemite

NC28

1123

Waisalan

SI159

1173

Wassu

SI56

1024

Undur

C293

1074

Waemiting

C30

1124

Waisamet

NC137

1174

Watidal

OB183

1025

Uneth

NC48

1075

Waemorat

C31

1125

Waisamu

C209

1175

Watkidat

OB500

1026

Upuhupun

OB320

1076

Waemulang

C79

1126

Waisarisa

C210

1176

Watlaar

OB501

1027

Ur

OB486

1077

Waenalut

C80

1127

Waitila

NC93

1177

Watludan

NC95

1028

Ur Pulau

OB487

1078

Waenamaolon

NC52

1128

Waitonipa

NC94

1178

Watmasa

OB184

1029

Uraur

NC120

1079

Waenetat

U3

1129

Wakal

C160

1179

Watmuri

OB185

1030

Ureng

U94

1080

Waenibe

C32

1130

Wakarleli

U62

1180

Watngil

OB502

1031

Urimessing

U48

1081

Waenono

C81

1131

Wakasihu

C161

1181

Watngon

OB503

1032

Urimessing

U49

1082

Waepandan

C82

1132

Wakol

OB497

1182

Watsin

OB504

1033

Uring Tutra

SI53

1083

Waeperang

C33

1133

Wakolo

C211

1183

Watu Watu

C297

1034

Uritetu

U50

1084

Waepotih

C34

1134

Wakpapapi

OB322

1184

Watuar

OB505

1035

Urung

SI156

1085

Waepure

C35

1135

Wakua

OB110

1185

Watui

NC122

1036

Usliapan

NC89

1086

Waer

OB492

1136

Walakone

C212

1186

Waturu

OB186

1037

Ustutun

OB321

1087

Waer

SI54

1137

Walang Tenga

C294

1187

Watuwei

OB325

1038

Usun Kataloka

SI157

1088

Waerat

OB493

1138

Walbele

C87

1188

Waur

OB506

1039

Utta

SI158

1089

Waereman

NC29

1139

Walerang

OB182

1189

Waur Tahit

OB507

1040

Uwat

OB488

1090

Waereman

NC53

1140

Wali

C88

1190

Way Asih

NC96

1041

Uwat Reyaan

OB489

1091

Waesala

C207

1141

Walling Spanciby

SI55

1191

Wayame

U55

1042

Uwat Wear

OB490

1092

Waesili

C83

1142

Walunghelat

NC55

1192

Wearlilir

OB508

1043

Uwen Pantai

C206

1093

Waetawa

C84

1143

Wamana Baru

NC33

1193

Weduar

OB509

1044

Uweth

NC121

1094

Waeteba

C85

1144

Wamkana

C89

1194

Weduar Fer

OB510

1045

Waai

C158

1095

Waetele

NC30

1145

Wamlana

U4

1195

Weer Frawaf

OB511

1046

Wab

OB491

1096

Waetina

NC31

1146

Wamsisi

C90

1196

Weer Ohoiker

OB512

1047

Wabar

OB180

1097

Waeturen

C86

1147

Wanakarta

U5

1197

Weer Ohoinam

OB513

1048

Wabloy

NC19

1098

Waeura

C36

1148

Wanareja

NC34

1198

Welora

OB326

1049

Wadankou

OB181

1099

Wafan

OB105

1149

Wangel

OB111

1199

Welutu

OB187

1050

Waedanga

NC20

1100

Waflan

NC32

1150

Wanuwui

OB323

1200

Werain

OB188

Appendix Table 1. Village typology in Maluku Province- part G

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

NO.

VILLAGE

CODE

1201

Weratan

OB189

1212

Wolu

C164

1223

Yafila

NC98

1202

Werinama

C298

1213

Wonosari

U98

1224

Yainuelo

C165

1203

Werka

OB514

1214

Wonreli

OB329

1225

Yaltubung

OB331

1204

Wermaf

OB515

1215

Wotay

NC97

1226

Yamalatu

C166

1205

Wermatang

OB190

1216

Wowonda

OB191

1227

Yamluli

OB332

1206

Werwaru

OB327

1217

Wulmasa

OB192

1228

Yamtel

OB519

1207

Wewali

C91

1218

Wulur

OB330

1229

Yamtimur

OB520

1208

Widit

NC38

1219

Wulurat

OB517

1230

Yapas

OB219

1209

Wiratan

OB328

1220

Wunin Eldedora

SI160

1231

Yaputih

C167

1210

Wirin

OB516

1221

Wunlah

OB193

1232

Yatoke

OB333

1211

Wokam

OB117

1222

Yafavun

OB518

1233

Yatwav

OB521

*Note: C = Coastal, NC = Non Coastal, OB = Outer/Border, U = Urban, SI = Small Island
  References

[1] Pemerintah Provinsi Maluku. (2014). Rencana Pembangunan Jangka menengah Daerah Provinsi Maluku Tahun 2014-2019. https://jdih.malukuprov.go.id/peraturan/14pdmaluku021.pdf. 

[2] Menteri Dalam Negeri Republik Indonesia. (2022). Perubahan ATAS peraturan Menteri Dalam Negeri Nomor 67 Tahun 2020 Tentang Rencana Strategis Kementerian Dalam Negeri Tahun 2020-2024. https://peraturan.bpk.go.id/Download/355038/2024pmdagri04.pdf. 

[3] Jiao, J., Wang, J., Zhang, F., Jin, F., Liu, W. (2020). Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China. Transport Policy, 91: 1-15. https://doi.org/10.1016/j.tranpol.2020.03.001

[4] Zolfaghari, M., Kabiri, M., Saadatmanesh, H. (2020). Impact of socio-economic infrastructure investments on income inequality in Iran. Journal of Policy Modeling, 42(5): 1146-1168. https://doi.org/10.1016/j.jpolmod.2020.02.004 

[5] Nicoletti, L., Sirenko, M., Verma, T. (2023). Disadvantaged communities have lower access to urban infrastructure. Urban Analytics and City Science, 50(3): 831-849 https://doi.org/10.1177/23998083221131044 

[6] Ghufron, M.I., Bustomi, A.A. (2022). Infrastructure development and socio-economic disparities in Indonesian society. International Journal of Economy and Development Research, 1(2): 22-33. https://doi.org/10.33650/ijed.v1i2.5719 

[7] Maluku, D.K. (2021). Laporan Kinerja Instansi Pemerintah Dinas Kelautan dan Perikanan Provinsi Maluku 2021. Ambon: Dinas Kelautan dan Perikanan Provinsi Maluku. 

[8] Pattilouw, D.R. (2024). Optimalisasi dana Transfer Ke Daerah (TKD) dalam mendukung percepatan pembangunan di kepulauan maluku. In Bersama Memajukan Indonesia Timur: Membangun Infrastruktur Ekonomi Berkelanjutan Yang Inklusif melalui Skema Pembiayaan Kreatif, pp. 208-238. https://institute.iigf.co.id/e-library/lainnya/73/bersama-memajukan-indonesia-timur-:-membangun-infrastruktur-ekonomi-berkelanjutan-yang-inklusif-melalui-skema-pembiayaan-kreatif.

[9] BPS Provinsi Maluku/BPS-Statistics Maluku Province. (2024). Provinsi Maluku Dalam Angka 2024. Ambon: Badan Pusat Statistik Provinsi Maluku.

[10] Amelia, S., Guswandi. (2023). Tipologi wilayah dan indeks perkembangan wilayah kabupaten dharmasraya. Jurnal Wilayah dan Lingkungan, 11(2): 190-203. https://doi.org/10.14710/jwl.11.2.190-203 

[11] Balz, V.E. (2023). Regional design: A transformative approach to planning. Planning Practise & Research, 39(1): 1-13. https://doi.org/10.1080/02697459.2024.2292895 

[12] Helmi, F., Rustiadi, E., Juanda, B., Mulatsih, S. (2025). Spatial typology of regional development in Metropolotan Pekansikawan, Riau Province. International Journal of Sustainable Development and Planning, 20(5): 2017-2028. https://doi.org/10.18280/ijsdp.200519  

[13] Santoso, S. (2020). Panduan lengkap SPSS 26. Jakarta: PT Elex Media Computindo. https://library.bpk.go.id/koleksi/detil/jkpkbpkpp-p-1ylIAc5pMv. 

[14] Mangale, S. (2020). Scree plot. Medium. https://medium.com/@sanchitamangale12/scree-plot-733ed72c8608.

[15] Jolliffe, I.T., Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): 20150202. https://doi.org/10.1098/rsta.2015.0202

[16] Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics (5th ed.). SAGE Publications. 

[17] Tabachnick, B.G., Fidell, L.S. (2019). Using Multivariate Statistics (7th ed.). Pearson. 

[18] Noviandy, T.R., Hardi, I., Zahriah, Z., Sofyan, R., Sasmita, N.R., Hilal, I.S., Idroes, G.M. (2024). Environmental and economic clustering of Indonesia province: Insight from K-Means analysis. Leuser Journal of Environmental Studies, 2(1): 41-51. https://doi.org/10.60084/ljes.v2i1.181 

[19] Wang, Z. (2023). Spatial differentiation characteristics of rural areas based on machine learning and GIS statistical analysis – A case study of Yongtai County, Fuzhou City. Sustainability, 15(5): 4367. https://doi.org/10.3390/su15054367 

[20] Hao, Y., Li, Z., Wu, J. (2024). Sustainable spatial features of settlements along the Miao Frontier Wall and Miao Frontier Corridor analyzed through machine learning clustering. Sustainability, 16(20): 8943. https://doi.org/10.3390/su16208943

[21] Li, B., Wang, J., Jin, Y. (2022). Spatial distribution characteristics of traditional villages and influence factors thereof in Hilly and Gully Areas of Northern Shaanxi. Sustainability, 14(22): 15327. https://doi.org/10.3390/su142215327