Numerical simulation of heat transfer over a flat plate with a triangular vortex generator

Numerical simulation of heat transfer over a flat plate with a triangular vortex generator

Morteza BayarehAmireh Nourbakhsh Mohammad Erfan Khadivar 

Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran

Department of Engineering, Bu-Ali Sina University, Hamedan, Iran

Corresponding Author Email: 
nourbakhsh@basu.ac.i
Page: 
1493-1501
|
DOI: 
https://doi.org/10.18280/ijht.360443
Received: 
17 March 2018
| |
Accepted: 
9 October 2018
| | Citation

OPEN ACCESS

Abstract: 

In the present work, the effect of the angle of a triangular vortex generator on the heat transfer of a flat plate is investigated. Incompressible three-dimensional fluid flows in a channel with constant temperature boundary condition. The results showed that the Nusselt number increases and the pressure decreases with the Reynolds number. It is demonstrated that the increase in the angle from 30° to 90° has a significant effect on the Nusselt number. The pressure drop remains constant at a 60° angle with increasing Reynolds number. The results revealed that the longitudinal vortices that have an important effect on the heat transfer become stronger at larger angles of the vortex generator.

Keywords: 

vortex generator, Nusselt number, triangular wings, spin angle, longitudinal vortex

1. Introduction
2. Governing Equations
3. Results
4. Conclusions
Nomenclature
  References

[1] Schubauer GB, Spangenberg WG. (1960). Forced mixing in boundary layers. Journal of Fluid Mechanics 8(1): 10-32. http://dx.doi.org/10.1017/S0022112060000372

[2] Johnson TR, Joubert PN. (1969). The influence of vortex generators on the drag and heat transfer from a circular cylinder normal to an airstream. Journal of Heat Transfer 91(1): 91-99. http://dx.doi.org/10.1115/1.3580126

[3] Dupont F, Gabillet C, Bot P. (2003). Experimental study of the flow in a compact heat exchanger channel with embossed-type vortex generators. Journal of Fluids Engineering 125(4): 701-709. http://dx.doi.org/10.1115/1.1595675

[4] Fiebig M, Kallweit P, Mitra N, Tiggelbeck S. (1991). Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Experimental Thermal and Fluid Science 4(1): 103-114. http://dx.doi.org/10.1016/0894-1777(91)90024-L

[5] Russell CM. (1986). The development of a high performance heat transfer surface. In Heat Transfer Conference, pp. 843-855. 

[6] Lin CN, Jang JY. (2002). Conjugate heat transfer and fluid flow analysis in fin-tube heat exchangers with wave-type vortex generators. Journal of Enhanced Heat Transfer 9(3-4): 123-136. http://dx.doi.org/10.1080/10655130215737

[7] Leu JS, Wu YH, Jang JY. (2004). Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. International Journal of Heat and Mass Transfer 47(19): 4327-4338. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.04.031

[8] Lei YG, He YL, Tian LT, Chu P, Tao WQ. (2010). Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chemical Engineering Science 65(5): 1551-1562. http://dx.doi.org/10.1016/j.ces.2009.10.017

[9] Joardar A, Jacobi AM. (2007). A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger. Journal of Heat Transfer 129(9): 1156-1167. http://dx.doi.org/10.1115/1.2740308

[10] Joardar A, Jacobi AM. (2008). Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. International Journal of refrigeration 31(1): 87-97. http://dx.doi.org/10.1016/j.ijrefrig.2007.04.011

[11] Didarul IM, Kenyu O, Minoru Y, Izuru S. (2007). Study on heat transfer and fluid flow characteristics with short rectangular plate fin of different pattern. Experimental Thermal and Fluid Science 31(4): 367-379. http://dx.doi.org/10.1016/j.expthermflusci.2006.05.009

[12] Gorji M, Mirgolbabaei H, Barari A, Domairry G, Nadim N. (2011). Numerical analysis on longitudinal location optimization of vortex generator in compact heat exchangers. International Journal for Numerical Methods in Fluids 66(6): 705-713. http://dx.doi.org/10.1002/fld.2278

[13] Wang Q, Chen Q, Wang L, Zeng M, Huang Y, Xiao Z. (2007). Experimental study of heat transfer enhancement in narrow rectangular channel with longitudinal vortex generators. Nuclear Engineering and Design 237(7): 686-693. http://dx.doi.org/10.1016/j.nucengdes.2006.09.003

[14] Wu JM, Tao WQ. (2008). Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B: Parametric study of major influence factors. International Journal of Heat and Mass Transfer 51(13): 3683-3692. 

[15] Wu JM, Tao WQ. (2008). Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: Verification of field synergy principle. International Journal of Heat and Mass Transfer 51(5): 1179-1191. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.03.032

[16] Tiggelbeck ST, Mitra NK, Fiebig M. (1994). Comparison of wing-type vortex generators for heat transfer enhancement in channel flows. Journal of Heat Transfer 116(4): 880-885. http://dx.doi.org/10.1115/1.2911462

[17] Gentry MC, Jacobi AM. (2002). Heat transfer enhancement by delta-wing-generated tip vortices in flat-plate and developing channel flows. Urbana 51: 61801. http://dx.doi.org/10.1115/1.1513578 

[18] Yang JS, Seo JK, Lee KB. (2001). A numerical analysis on flow field and heat transfer by interaction between a pair of vortices in rectangular channel flow. Current Applied Physics 1(4): 393-405. http://dx.doi.org/10.1016/S1567-1739(01)00042-6

[19] Liou TM, Chen CC, Tsai TW. (1999, June). Heat transfer and fluid flow in a square duct with 12 different shaped vortex generators. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition (pp. V003T01A073-V003T01A073). American Society of Mechanical Engineers. 

[20] Zhu JX, Fiebig M, Mitra NK. (1995). Numerical investigation of turbulent flows and heat transfer in a rib-roughened channel with longitudinal vortex generators. International Journal of Heat and Mass Transfer 38(3): 495-501. http://dx.doi.org/10.1016/0017-9310(94)00177-W

[21] Fiebig M. (1995). Embedded vortices in internal flow: Heat transfer and pressure loss enhancement. International Journal of Heat and Fluid Flow 16(5): 376-388. http://dx.doi.org/10.1016/0142-727X(95)00043-P

[22] Hiravennavar SR, Tulapurkara EG, Biswas G. (2007). A note on the flow and heat transfer enhancement in a channel with built-in winglet pair. International Journal of Heat and Fluid Flow 28(2): 299-305. http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.030

[23] Ferrouillat S, Tochon P, Garnier C, Peerhossaini H. (2006). Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Applied Thermal Engineering 26(16): 1820-1829. 

[24] Abdollahi A, Shams M. (2015). Optimization of shape and angle of attack of winglet vortex generator in a rectangular channel for heat transfer enhancement. Applied Thermal Engineering 81: 376-387. 

[25] Khanjian A, Habchi C, Russeil S, Bougeard D, Lemenand T. (2017). Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow. International Journal of Thermal Sciences 114: 1-14. http://dx.doi.org/10.1016/j.ijthermalsci.2016.12.010

[26] Jahanbakhshi A, Ahmadi Nadooshan A, Bayareh M. (2018). Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. Journal of Thermal Analysis and Calorimetry 133: 1407-1416. http://dx.doi.org/10.1007/s10973-018-7219-6

[27] Sepyani M, Shateri A, Bayareh M. (2018). Investigating the mixed convection heat transfer of a nanofluid in a square chamber with a rotating blade. Journal of Thermal Analysis and Calorimetry 133: 1-15. http://dx.doi.org/10.1007/s10973-018-7098-x

[28] Bayareh M, Kianfar A, Kasaeipour A. (2018). Mixed convection heat transfer of water-alumina nanofluid in an inclined and baffled c-shaped enclosure. Journal of Heat and Mass Transfer Research. http://dx.doi.org/10.22075/jhmtr.2018.13390.1196

[29] Nourbakhsh A, Bayareh M. (2018). Numerical study of natural convection heat transfer of Al2O3/Water nanofluid in a -shaped microchannel. Energy Equipment and Systems 6: 143-154. http://dx.doi.org/10.22059/ees.2018.31533

[30] Piombini H, Boscher C, Barre AL, Avice J. (2017). Identification de faïençage de couche mince sol-gel. Instrumentation, Mesure, Metrologie 16: 1-4. https://doi.org/10.3166/i2m.16.1-4.143-164