Characteristics of heat flow and geothermal fields in Ruidian, Western Yunnan Province, China

Characteristics of heat flow and geothermal fields in Ruidian, Western Yunnan Province, China

Junjie Ba Chuntian Su  Yanqing Li  Shuiyun Tu 

Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin 541004, China

Yunnan Geological Engineering Exploration Group Co. Ltd., Kunming 650041, China

Corresponding Author Email: 
tushuiyun7712@163.com
Page: 
1203-1211
|
DOI: 
https://doi.org/10.18280/ijht.360407
Received: 
19 January 2018
| |
Accepted: 
18 June 2018
| | Citation

OPEN ACCESS

Abstract: 

As an important parameter, the temperature of the thermal reservoir is essential to the classification of the geothermal system and the potential of geothermal resources. The inversion coupling study of the geothermal field is an important basis for establishing the genetic model for the geothermal field of Ruidian, Western Yunnan Province, China. With a geothermal flow of up to 120.5mW/m2, and an average geothermal gradient of 4.61°C/100m, the Tengchong-Ruidian area is a high temperature geothermal area, where the highest hot spring water temperature can reach 91.5°C. The geothermal reservoirs there can be divided into shallow and deep thermal reservoirs. By using the Log (Q/K) curve method and the Na-K-Mg triangle diagram method, this paper finds that the underground hot water in the study area is in an unsaturated state and mixed with cold water. Then it calculates the thermal reservoir temperature and analyzes the deep temperature characteristics of the subsurface thermal fluid and the mixing process of the hot and cold water using the SiO2 solubility geothermometer, the dissolved chloride-enthalpy plot, the dissolved silica-enthalpy graph, and the linear regression equations iteration solution methods. The conclusion obtained from this study is that the temperature of the shallow thermal reservoir is about 145°C, that the temperature of the deep thermal reservoir about 220°C, and that the proportion of cold water mixed generally between 60% and 70%. The comprehensive research results of the temperature field in the study area provide theoretical and data support for the establishment of the genetic mechanism for the Ruidian geothermal field.

Keywords: 

ruidian geothermal field, reservoir temperature, heat flow, geothermal gradient

1. Introduction
2. Geological Setting
3. Temperature Calculation of Shallow Geothermal Reservoir
4. Temperature Calculation of the Deep Geothermal Reservoir
5. Conclusions
Acknowledgement
  References

[1] Guo QH. (2012). Hydrogeochemistry of high-temperature geothermal systems in China: A review. Applied Geochemistry 27(10): 1887-1898. http://dx.doi.org/10.1016/j.apgeochem.2012.07.006

[2] Wang GL, Zhang FW, Liu ZM. (2000). An analysis of present situation and prospects of geothermal energy development and utilization in the world. Acta Geoscientia Sinica (2): 134-139. http://dx.doi.org/10.3321/j.issn: 1006-3021.2000.02.004

[3] Ba JJ, Su CT, Li YQ. (2018). A case study on heat source mechanism of high-temperature geothermal field. Annales de Chimie - Science des Matériaux 42(1): 129-147. http://dx.doi.org/10.3166/ACSM.42.129-147 

[4] Moraci F, Fazia C, Errigo MF. (2018). Smart tools for energy resilient city. Annales de Chimie - Science des Matériaux 42(4): 459-470. http://dx.doi.org/10.3166/ACSM.42.459-470

[5] Mongillo MA. (2010). Preface to geothermics special issue on sustainable geothermal utilization. Geothermics 39(4): 279-282. http://dx.doi.org/10.1016/j.geothermics.2010.09.011

[6] Fedele R, Merenda M, Praticò FG, Carotenuto F, Corte FGD. (2018). Energy harvesting for IoT road monitoring systems. Instrumentation, Mesure, Métrologie 17(4): 605-623. http://dx.doi.org/10.3166/I2M.17.605-623

[7] Barbier E. (1997). Nature and technology of geothermal energy: A review. Renewable & Sustainable Energy Reviews (1): 1-69. http://dx.doi.org/10.1016/S1364-0321(97)00001-4

[8] Pirlo MC. (2004). Hydrogeochemistry and geothermometry of thermal groudwaters from the Bidsville Track Ridge, Great Artesian Basin, South Australia. Geothermics 33(6): 743-774. http://dx.doi.org/10.1016/j.geothermics.2004.07.001

[9] Sun H, Zhang X, Zhou L, Shao X. (2018). Hydration heat and shrinkage of the support of high-performance concrete-filled steel tubes. Chemical Engineering Transactions 66: 1171-1176. http://dx.doi.org/10.3303/CET1866196

[10] Govind RR, Vishwambhar SP, Prasad JSVRK. (2018). MHD flow of Powell-Eyring nanofluid containing nanoparticles and gyrotactic microorganisms over a stretched surface. Revue des Composites et des Matériaux Avancés 28(3): 405-420. http://dx.doi.org/10.3166/RCMA.28.405-420

[11] Chandrajith R, Barth JAC, Subasinghe ND. (2013). Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. Journal of Hydrology 476(7): 360-369. http://dx.doi.org/10.1016/j.jhydrol. 2012.11.04

[12] Kearey P, Wei H. (1993). Geothermal fields of China. J. Volcanol. Geoth. Res. 56: 415-428. http://dx.doi.org/10.1016/0377-0273(93)90006-D

[13] Du J, Liu C, Fu B, Ninomia Y, Zhang Y, Wang C, Wang H, Sun Z. (2005). Variations of geothermometry and chemical-isotope compositions of hot spring fluids in the Rehai geothermal field, southwestern China. J. Volcanol. Geoth. Res. 142: 243-261. http://dx.doi.org/10.1016/j.jvolgeores.2004.11.009

[14] Zhu M, Tong W. (1987). Surface hydrothermal minerals and their distribution in the Tengchong geothermal area, China. Geothermics 16: 181-195. http://dx.doi.org/10.1016/0375-6505(87)90065-4

[15] Fournier R.O. (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics (5): 41-50. http://dx.doi.org/10.1016/0375-6505(77)90007-4

[16] Giggenbach W.F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca bioindicators. Geochimica et Cosmochimica Acta 52(12): 2749-2765. http://dx.doi.org/10.1016/0016-7037(88)90143-3

[17] Giggenbach W.F. (1980). Geothermal gas equilibria. Geochimica et Cosmochimica Acta 44(12): 2021-2032. http://dx.doi.org/10.1016/0016-7037(80)90200-8

[18] Verma SP, Santoyo E. (1997). New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology and Geothermal Research 79(1-2): 9-23. http://dx.doi.org/10.1016/S0377-0273(97)00024-3

[19] Giggenbach WF. (2001). Evaluation of results from the fourth and fifth IAVCEI field workshop on volcanic gases, Vulcano island, Italy and Java, Indonesia. Journal of Volcanology & Geothermal Research 108(1): 157-172. http://dx.doi.org/10.1016/S0377-0273(00)00283-3

[20] Giggenbach W, Sheppard DS, Robinson BW. (1994). Geochemical structure and position of the Waiotapu geothermal field, New Zealand. Geothermics 23(5): 599-644. http://dx.doi.org/10.1016/0375-6505(94)90022-1

[21] Giggenbach WF, Sano Y, Wakita H. (1993). Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochimica Et Cosmochimica Acta 57(14): 3427-3455. http://dx.doi.org/10.1016/0016-7037(93)90549-C

[22] Kharaka MSLYK. (1982). Chemical Geothermometers Applied to Formation Waters, Gulf of Mexico and California Basins: ABSTRACT. Aapg Bulletin 66: 588. http://dx.doi.org/10.1306/03B59EAE-16D1-11D7-8645000102C1865D

[23] Giggenbach WF. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica Et Cosmochimica Acta 52(12): 2749-2765. http://dx.doi.org/10.1016/0016-7037(88)90143-3

[24] Fournier RO, Truesdell AH. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A. Geothermics 2: 529-535. http://dx.doi.org/10.1016/0375-6505(70)90051-9

[25] Fournier RO. (1979). Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. Journal of Volcanology & Geothermal Research 5(1-2): 1-16. http://dx.doi.org/10.1016/0377-0273(79)90029-5