The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler

The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler

Ciro Aprea Adriana Greco  Angelo Maiorino  Claudia Masselli 

University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy

University of Naples “Federico II”, P. le Tecchio 80, 80125 Naples, Italy

Corresponding Author Email: 
cmasselli@unisa.it
Page: 
1155-1162
|
DOI: 
https://doi.org/10.18280/ijht.360401
Received: 
29 August 2018
| |
Accepted: 
11 November 2018
| | Citation

OPEN ACCESS

Abstract: 

Caloric refrigeration is an emerging class of cooling technologies based on caloric effects detected in ferro-caloric solid-state materials. Depending of the nature of the driving field, it is possible distinguishing four main caloric refrigerations: magnetocaloric, electrocaloric, elastocaloric and barocaloric. Therefore, caloric refrigeration is based on solid-state materials, unlike vapor compression, nowadays still the most diffused cooling technique, whom employs fluids as refrigerants. Solid-state materials do not provide a direct contribution in global warming, since they do not disperse in the atmosphere, but only an indirect impact is registered when they are employed as refrigerants in cooling systems. On the other side, a vapor compression plant is characterized by both direct and indirect contributions to global warming. The main parameter to evaluate global warming impact and carbon-dioxide emissions coming out from a cooler is the Total Environmental Warming Impact (TEWI) index, which accounts both the direct and indirect contributions produced. In this paper a numerical ∆TEWI analysis is presented, comparing the environmental impact of a caloric refrigerator, operating with different caloric materials, with the one of a vapor compression cooler working with HFC134a.

Keywords: 

caloric refrigeration, Environmental Impact, TEWI analysis, solid-state materials, vapor compression, electrocaloric, elastocaloric, magnetocaloric

1. Introduction
2. 2-D Model
3. Solid-State Refrigerants
4. The TEWI Concept
5. Numerical Simulations
6. Results
7. Conclusions
Nomenclature
  References

[1] Kitanovski A, Plaznik U, Tomc U, Poredoš A. (2015). Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration 57: 288-298. https://doi.org/10.1016/j.ijrefrig.2015.06.008

[2] Planes A, Stern-Taulats E, Castán T, Vives E, Mañosa L, Saxena A. (2015). Caloric and multicaloric effects in shape memory alloys. Materials Today: Proceedings 2: S477-S484. https://doi.org/10.1016/j.matpr.2015.07.332

[3] Aprea C, Greco A, Maiorino A., Masselli C. (2018). A comparison between different materials with mechanocaloric effect. International Journal of Heat and Technology 36(3): 801-807. https://doi.org/10.18280/ijht.360304

[4] Pecharsky VK, Gschneidner Jr KA. (1999) Magnetocaloric effect and magnetic refrigeration. J. of Magn. and Magn. Mat. 200(1-3): 44-56. https://doi.org/10.1016/S0304-8853(99)00397-2

[5] Ju YS. (2010). Solid-state refrigeration based on the electrocaloric effect for electronics cooling. Journal of Electronic Packaging 132(4): 041004. https://doi.org/10.1115/1.4002896

[6] Tušek J, Engelbrecht K, Millán‐Solsona R, Mañosa L, Vives E, Mikkelsen LP, Pryds N. (2015). The elastocaloric effect: a way to cool efficiently. Adv. En. Mat. 5(13). https://doi.org/10.1002/aenm.201500361

[7] Strässle T, Furrer A, Dönni A, Komatsubara T. (2002). Barocaloric effect: The use of pressure for magnetic cooling in Ce3 Pd20 Ge6. Journal of Applied Physics 91(10): 8543-8545. https://doi.org/10.1063/1.1456450

[8] Rowe AM, Barclay JA. (2003). Ideal magnetocaloric effect for active magnetic regenerators. J. of Appl. Physics 93(3): 1672-1676. https://doi.org/10.1063/1.1536016

[9] Aprea C, Greco A, Maiorino A, Masselli C. (2017). Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique. IOP Conf. Series: Journal of Physics: Conf. Series 796 012019. https://doi.org/10.1088/1742-6596/796/1/012019

[10] Mota-Babiloni A, Navarro-Esbrí J, Barragán-Cervera Á, Molés F, Peris B. (2015). Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems. International Journal of Refrigeration 52: 21-31. https://doi.org/10.1016/j.ijrefrig.2014.12.021

[11] In S, Cho K, Lim B, Kim H, Youn B. (2014). Performance test of residential heat pump after partial optimization using low GWP refrigerants. Appl. Ther. En. 72(2): 315-322. https://doi.org/10.1016/j.applthermaleng.2014.04. 040

[12] Mirandola A, Lorenzini E. (2016). Energy, environment and climate: From the past to the future. Int. J. of Heat and Technology 34(2): 159-164. https://doi.org/10.18280/ijht.340201

[13] Montreal Protocol on substances that deplete the ozone layer, United Nation Environment Program (UN), New York, NY, USA, 1987.

[14] Kyoto Protocol to the United Nation Framework Convention on Climate Change, Kyoto, JPN, 1997.

[15] Heath EA. (2017). Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali Amendment). International Legal Materials 56(1): 193-205. https://doi.org/10.1017/ilm.2016.2 

[16] Aprea C, Greco A, Maiorino A, Masselli C. (2018). The drop-in of HFC134a with HFO1234ze in a household refrigerator. Int. J. of Thermal Sciences 127: 117-125. https://doi.org/10.1016/j.ijthermalsci.2018.01.026

[17] Aprea C, Greco A, Maiorino A, Masselli C, Metallo A. (2016). HFO1234yf as a drop-in replacement for R134a in domestic refrigerators: A life cycle climate performance analysis. International Journal of Heat and Technology 34(Special Issue 2): S212-S218. https://doi.org/10.18280/ijht.34S2

[18] Aprea C, Greco A, Maiorino A, Masselli C, Metallo A. (2016). HFO1234ze as drop-in replacement for R134a in domestic refrigerators: An environmental impact analysis. Energy Procedia 101: 964–971. https://doi.org/10.1016/j.egypro.2016.11.122

[19] Greco A, Mastrullo R, Palombo A. (1997). R407C as an alternative to R22 in vapour compression plant: an experimental study. International journal of energy research 21(12): 1087-1098. https://doi.org/10.1002/(SICI)1099-114X(19971010)21:12<1087::AID-ER330>3.0.CO;2-Y

[20] Fähler S, Rößler UK, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Müller S, Quandt E, Albe K. (2012). Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mat. 14(1‐2): 10-19. https://doi.org/10.1002/adem.201100178

[21] Pecharsky VK, Cui J, Johnson DD. (2016). (Magneto) caloric refrigeration: is there light at the end of the tunnel? Phil. Trans. R. Soc. A 374(2074): 20150305. https://doi.org/10.1098/rsta.2015.0305

[22] Burattini C, Nardecchia F, Bisegna F, Cellucci L, Gugliermetti F, de Lieto Vollaro A, Salata F, Golasi I. (2015). Methodological approach to the energy analysis of unconstrained historical buildings. Sustainability 7: 10428-10444. https://doi.org/10.3390/su70810428

[23] Lassandro P, Turi SD. (2017). Energy efficiency and resilience against increasing temperatures in summer: the use of PCM and cool materials in buildings. International Journal of Heat and Technology 35: S307-S315. https://doi.org/10.18280/ijht.35Sp0142

[24] Pagliaro F, Cellucci L, Burattini C, Bisegna F, Gugliermetti F, de Lieto Vollaro A, Salata F, Golasi, I. (2015). A methodological comparison between energy and environmental performance evaluation. Sustainability 7: 10324-10342. https://doi.org/10.3390/su70810324

[25] Aprea C, Greco A, Maiorino A. (2011). A numerical analysis of an active magnetic regenerative cascade system. Int. J. of Energy Research 35(3): 177-188. https://doi.org/10.1002/er.1682

[26] Aprea C, Greco A, Maiorino A, Masselli C. (2018). Magnetic refrigeration: a comparison between MnAs and FeRh based alloys in the room temperature range. Italian Journal of Engineering Science: Tecnica Italiana 61+1(1): 6-11. https://doi.org/10.18280/IJES.620101

[27] Aprea C, Greco A, Maiorino A. (2012). Modelling an active magnetic refrigeration system: a comparison with different models of incompressible flow through a packed bed. Applied Thermal Engineering 36: 296-306. https://doi.org/10.1016/j.applthermaleng.2011.10.034

[28] Aprea C, Greco A, Maiorino A. (2013). The use of the first and of the second order phase magnetic transition alloys for an AMR refrigerator at room temperature: a numerical analysis of the energy performances. Energy conversion and management 70: 40-55. https://doi.org/10.1016/j.enconman.2013.02.006

[29] Aprea C, Greco A, Maiorino A, Masselli C. (2018). Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy 165: 439-455. https://doi.org/10.1016/j.energy.2018.09.114

[30] Aprea C, Greco A, Maiorino A, Masselli C. (2017). A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration. International Journal of Heat and Technology 35(1): 225-234. https://doi.org/10.18280/ijht.350130 

[31] Aprea C, Greco A, Maiorino A, Masselli C. (2017). Analyzing the energetic performances of AMR regenerator working with different magnetocaloric materials: investigations and viewpoints. International Journal of Heat and Technology 35(Special Issue 1): S383-S390. https://doi.org/10.18280/ijht.35Sp0152

[32] Aprea C, Greco A, Maiorino A, Masselli C. (2018). Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator. Thermal Science and Engineering Progress 6: 370-379. https://doi.org/10.1016/j.tsep.2018.01.006

[33] Aprea C, Greco A, Maiorino A. (2015). Geo Thermag: a geothermal magnetic refrigerator. Int. J. of Refrig. 59: 75-83. https://doi.org/10.1016/j.ijrefrig.2015.07.014

[34] Aprea C, Greco A, Maiorino A, Masselli C. (2016). The energy performances of a rotary permanent magnet magnetic refrigerator. Int. J. of Refrig. 61: 1-11. https://doi.org/10.1016/j.ijrefrig.2015.09.005

[35] Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C. (2016). A rotary permanent magnet magnetic refrigerator based on AMR cycle. Applied Thermal Engineering 101: 699-703. https://doi.org/10.1016/j.applthermaleng.2016.01.097

[36] Aprea C, Greco A, Maiorino A. (2017). An application of the artificial neural network to optimise the energy performances of a magnetic refrigerator. Int. J. of Refrig. 82: 238-251. https://doi.org/10.1016/j.ijrefrig.2017.06.015

[37] Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner Jr. KA. (1998). Magnetic phase transitions and the magneto-thermal properties of gadolinium. Phys Rev. B 57(6): 3478-3490. https://doi.org/10.1103/PhysRevB.57.3478

[38] von Moos L, Bahl CRH, Nielsen KK, Engelbrecht K. (2015). The influence of hysteresis on the determination of the magnetocaloric effect in Gd5Si2Ge2. J. Phys. D Appl. Phys. 48: 1-7. https://doi.org/10.1088/0022-3727/48/2/025005

[39] Morrison K, Sandeman KG, Cohen LF, Sasso CP, Basso V, Barcza A, Katter M, Moore JD, Skokov KP, Gutfleisch O. (2012). Evaluation of the reliability of the measurement of key magnetocaloric properties: a round robin study of La(Fe,Si,Mn)Hδ conducted by the SSEEC consortium of European laboratories. Int. J. Refr. 35(6): 1528-1536. https://doi.org/10.1016/j.ijrefrig.2012.04.001

[40] Bjørk R, Bahl CRH, Katter M. (2010). Magnetocaloric properties of LaFe13-x-yCoxSiy and commercial grade Gd. J. Magn. Magn. Mater. 322(24): 3882-3888. https://doi.org/10.1016/j.jmmm.2010.08.013

[41] Li X, Qian XS, Lu SG, Cheng J, Fang Z, Zhang QM. (2011). Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl. Phys. Lett. 99(5): 052907. https://doi.org/10.1063/1.3624533 

[42] Hamad MA. (2013). Room temperature giant electrocaloric properties of relaxor ferroelectric 0.93 PMN-0.07 PT thin film. AIP Advances 3(3): 032115. https://doi.org/10.1063/1.4795156 

[43] Zhao Y, Hao X., Zhang Q. (2016). Enhanced energy-storage performance and electrocaloric effect in compositionally graded Pb(1-3/2x)LaxZr0.85Ti0.15O3. Ceram. Int 42(1): 1679-1687. https://doi.org/10.1016/j.ceramint.2015.09.122 

[44] Peng B, Fan H, Zhang Q. (2013). A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Advanced Functional Materials 23(23): 2987-2992. https://doi.org/10.1002/adfm.201202525

[45] Zhao Y, Hao X, Zhang Q. (2015). A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. Journal of Materials Chemistry C 3(8): 1694-1699. https://doi.org/10.1039/C4TC02381A

[46] Aprea C, Greco A, Maiorino A., Masselli C. (2016). A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model. International Journal of Refrigeration 69: 369-382. https://doi.org/10.1016/j.ijrefrig.2016.06.016

[47] Mañosa L, Planes A, Acet M. (2013) Advanced materials for solid-state refrigeration. Journal of Materials Chemistry A 1(16): 4925-4936. https://doi.org/10.1039/b000000x

[48]    Tušek J, Engelbrecht K, Millán‐Solsona R, Mañosa L, Vives E, Mikkelsen LP, Pryds N. (2015). The elastocaloric effect: A way to cool efficiently. Advanced Energy Materials 5(13). https://doi.org/10.1002/aenm.201500361

[49] Gorev MV, Bogdanov EV, Flerov IN, Kocharova AG, Laptash NM. (2010). Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4)2 WO2 F4 and (NH4)2 MoO2 F4 oxyfluorides. Physics of the Solid State 52(1): 167-175. https://doi.org/10.1134/S1063783410010294

[50] Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG. (2015). Giant barocaloric effect in hexagonal Ni2 In-type Mn-Co-Ge-In compounds around room temperature. Scientific Reports 5: 18027. https://doi.org/10.1038/srep18027

[51] Aprea C, Greco A, Maiorino A. (2016). An experimental investigation on the substitution of HFC134a with HFO1234YF in a domestic refrigerator. Appl. Ther. En. 106: 959-967. https://doi.org/10.1016/j.applthermaleng.2016.06.098