Convective Heat and Mass Transfer in an Mhd Nano Fluid in the Presence of Chemical Reaction and Thermal Radiation

Convective Heat and Mass Transfer in an Mhd Nano Fluid in the Presence of Chemical Reaction and Thermal Radiation

S.O. Bello B.I. Olajuwon* S.I. Kuye

Department of Mathematics and Statistics, Federal Polytechnic Ilaro, Ilaro, Nigeria

Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta, Nigeria

Corresponding Author Email: 
olajuwonishola@yahoo.com
Page: 
147-154
|
DOI: 
https://doi.org/10.18280/ijht.320121
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper examined the effect of chemical reaction and thermal radiation on the heat and mass transfer in an MHD water based nanofluid over a vertical plate. The nanoparticles used in this study were of Copper (Cu), Silver (Ag), Alumina (Al2O3) and Titanium Oxide (TiO2). The momentum, energy and concentration species equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations by using the appropriate similarity transformations for the velocity components, temperature and concentration. These equations were then solved numerically by employing the Runge- Kutta-Fehlberg shooting techniques. The effects of pertinent parameters such as; chemical reaction, thermal radiation, magnetic field, Schmidt number, particle volume fractions and the Prandtl number on the heat and mass transfer were studied. By using different types of nanofluid, the results indicate that the parameters studied have influence on the flow, heat and mass transfer in an MHD nanofluid.

Keywords: 

chemical reaction, thermal radiation, heat andmass transfer. magnetic field, water based nanofluid, particle volume fractions

1. Introduction
2. Mathematical Formulation
3. Method of Solution
4. Similarity Transformations
5. Discussion of Results
6. Conclusions
  References

[1] Alloui, Z., Vasseur, P., Reggio, M. (2012). Analytical and numerical study of buoyancy-driven convection in a vertical enclosure filled with nanofluids. Heat and Mass Transfer/Waerme- und Stoffuebertragung, 48 (4), pp. 627-639.

[2] Oueslati, F.S., Bennaccer, R. (2011). Heterogeneous Nanofluids Natural Convection Heat Transfer Enhancement. Nanoscale ResearchLetters, 6 (1), p. 222. http/www.nanocaslett.com/content/6/1/222.Nanofluid models.

[3] Godson, L., Raja, B., Mohan Lal, D., Wongwises, S. (2010). Enhancement of heat transfer using nanofluids-An overview. Renewable and Sustainable Energy Reviews, 14 (2), pp. 629-641.

[4] Hamad, M.A.A. (2011). Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. International Communications in Heat and Mass Transfer, 38 (4), pp. 487-492.

[5] Kakaç, S., Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52 (13-14), pp. 3187-3196.

[6] Khan, W.A., Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53 (11-12), pp. 2477-2483. 

[7] Kuznetsov, A.V., Nield, D.A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49 (2), pp. 243-247. 

[8] Do, K.H., Jang, S.P. (2010). Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. International Journal of Heat and Mass Transfer, 53 (9-10), pp. 2183-2192. 

[9] Özerinç, S., Kakaç, S., YazIcIoǧlu, A.G. (2010). Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics, 8 (2), pp. 145-170. 

[10] Sarma, P.K., Kedarnath, C., Ramanarayanan, C.P., Kishore, P.S., Rao, V.D., Ramakrishna, K., Srinivas, V. (2008). Turbulent convective heat transfer characteristics of nano fluid in a circular tube. International Journal of Heat and Technology, 26 (2), pp. 75-83. 

[11] Sarma, P.K., Chada, K., Sharma, K.V., Shyam Sundar, L., Kishore, P.S., Srinivas, V. (2010). Experimental study to predict momentum and thermal diffusivities from convective heat transfer data of n nano fluid with Al2O3 dispersion.  International Journal of Heat and Technology, 28 (1), pp. 123-131.

[12] Wang, X.-Q., Mujumdar, A.S. (2007). Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 46 (1), pp. 1-19. 

[13] El Bécaye Maïga, S., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow, 26 (4 SPEC. ISS.), pp. 530-546.

[14] Zaimi, K., Ishak, A., Pop, I. (2014). Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid.  Scientific Reports, 4, art. no. 4404.

[15] Khan, Md.S., Karim, I., Islam, Md.S. (2014). Possessions of chemical reaction on MHD heat and mass transfer nanofluid flow on a continuously moving surface.  American Chemical Science Journal, 4 (3), pp. 401-415.

[16] Rasekh, A., Ganji, D.D., Tavakoli, S. (2012). Numerical solutions for a nanofluid past over a stretching circular cylinder with non-uniform heat source.  Frontiers in Heat and Mass Transfer, 3 (4).

[17] Noghrehabadi, A., Ghalambaz, M., Izadpanahi, E., Pourrajab, R. (2014). Effect of magnetic field on the boundary layer flow, heat, and mass transfer of nanofluids over a stretching cylinder. Journal of Heat and Mass Transfer Research, 1, pp. 9-16.