Numerical Investigation of the Effect of Divergent Hot Tube on the Energy Separation in a Vortex tube

Numerical Investigation of the Effect of Divergent Hot Tube on the Energy Separation in a Vortex tube

Masoud RahimiSeyed Ehsan Rafiee Nader Pourmahmoud 

Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran

Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Corresponding Author Email: 
m.rahimi@mee.uut.ac.ir
Page: 
17-26
|
DOI: 
https://doi.org/10.18280/ijht.310203
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A mechanical device with no moving parts, a vortex tube can generate cold and hot gas flows from compressed gas. This paper investigates the effect of using a divergent hot tube on vortex tube refrigeration capacity. The computational fluid dynamics (CFD) model used is a three-dimensional steady compressible model utilizing the k-ɛ turbulence model. In this numerical research, different divergence angles of the hot tube (β=0°, 1°, 2°, 3°, 4°, and 6°) have been simulated to analyze the performance of the vortex tube. The results showed that as the angle diverges from β=0°, cold temperature separation improves at cold mass fractions greater than about 0.4, but increasing the angle to more than 4° impairs cold temperature separation compared with the cylindrical model because a secondary circulation develops in the vortex tube. Validation of a previous experimental study that used a cylindrical vortex tube has also been performed in this research.

Keywords: 

Vortex tube, Divergent hot tube, Numerical simulation, Energy separation.

1. Introduction
2. CFD model
3. Governing Equations
4. Results and Discussion
5. Conclusions
  References

[1] G.J. Ranque, Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air, J. Phys. Radium (Paris), Vol. 4, pp. 112–115, 1933.

[2] R. Hilsch, The use of expansion of gases in a centrifugal field as a cooling process, Rev. Sci. Instrum, Vol. 18, pp. 108–113, 1947.

[3] M. Kurosaka, Acoustic streaming in swirling flows and the Ranque-Hilsch vortex-tube effect, J. Fluid Mech, Vol. 124, pp. 139–172, 1982.

[4] K. Stephan, S. Lin, M. Durst, F. Huang and D. Seher, An investigation of energy separation in a vortex tube, Int. J. Heat Mass Transfer, Vol. 26, pp. 341–348, 1983.

[5] B.K. Ahlborn and J.M. Gordon, The vortex tube as a classic thermodynamic refrigeration cycle. J. Appl. Phys, Vol. 88, pp. 3645–3653, 2000.

[6] N.F. Aljuwayhel, G.F. Nellis and S.A. Klein, Parametric and internal study of the vortex tube using a CFD model, Int. J. Refrigeration, Vol. 28, pp. 442–450, 2005.

[7] U. Behera, P.J. Paul, S. Kasthurirengen, R. Karunanithi, S. N. Ram, K. Dinesh and S. Jacob, CFD analysis and experimental investigations towards optimizing the parameters of Ranque– Hilsch vortex tube, Int. J. Heat Mass Transfer, Vol. 48, pp. 1961–1973, 2005.

[8] H.M. Skye, G.F. Nellis and S.A. Klein, Comparison of CFD analysis to empirical data in a commercial vortex tube, Int. J. Refrigeration, Vol 29, pp. 71–80, 2006.

[9] H.S. Chang, S.K. Chang, H.J. Ui and B.H.L. Lakshmana Gowda, Experimental and Numerical Studies in a Vortex Tube, J. Mech. Sci. Tech, Vol. 20, pp. 418–425, 2006.

[10] S. Eisma-ard and P. Promvonge, Numerical investigations of the thermal separation in a Ranque-Hilsch vortex tube, Int. J. Heat Mass Transfer, Vol 50, pp. 821–832, 2007.

[11] A.M. Pinar, O. Uluer and V. Kirmaci, Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method. Int. J. Refrigeration, Vol 32, pp. 1487–1494, 2009.

[12] Y. Xue, M. Ajormandi and R. Kelso, A critical review of temperature separation in a vortex tube, J. Exp. Therm. Fluid Sci, Vol. 34, pp. 1367–1374, 2010.

[13] R. Shamsoddini and A. Hossein Nezhad, Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. Int. J. Refrigeration, Vol. 33, pp. 774–782, 2010.

[14] S. Akhesmeh, N. Pourmahmoud and H. Sedgi, Numerical study of the temperature separation in the Ranque-Hilsch vortex tube. Am. J. Eng. Appl. Sci, Vol 1, pp. 181–187, 2008.

[15] A.R. Bramo and N. Pourmahmoud, CFD simulation of length to diameter ratio effect on the energy separation in a vortex tube. Therm. Sci, Vol 15, pp. 833–848, 2011.

[16] N. Pourmahmoud, A. Hassan Zadeh, S.E. Rafiee and M. Rahimi, Three Dimensional Numerical Investigation of Effect of Convergent Nozzles on the Energy Separation in a Vortex Tube, International Journal of Heat and Technology, vol. 30(2), pp. 133-140, 2012.

[17] N. Pourmahmoud, A. Hassan Zadeh and O. Moutaby, Numerical Analysis of the Effect of Helical Nozzles Gap on the Cooling Capacity of Ranque-Hilsch Vortex Tube, Int. J. Refrigeration, Vol. 35, pp. 1473–1483. 2012.

[18] 25

[19] Y.D. Raiskii and L.E. Tankel,. Influence of vortex-tube saturation and length on the process of energetic gas separation. J. Eng. Phys, Vol 27, pp. 1578–1581, 1974.

[20] A.I. Gulyaev, Investigation of conical vortex tubes, J. Eng. Phys, Vol 10, pp. 193–195, 1966.

[21] H. Takahama and H. Yokosawa, Energy separation in vortex tube with a divergent chamber, J. Heat Transfer, Trans. ASME, Vol 103, pp.196–203, 1981.

[22] K. Chang, Q. Li, , G. Zhou and Q. Li, Experimental investigation of vortex tube refrigerator with a divergent hot tube, Int. J. Refrigeration, Vol 34, pp. 322–327, 2011.

[23] A.F. Gutsol, The Ranque effect. Phys. Usp, Vol 40, pp. 639–658, 1997.

[24] B.A. Shannak, Temperature separation and friction losses in vortex tube. Heat Mass Transfer, Vol 40, pp. 779–785, 2004.