A Survey Method Towards an Effective Emission Monitoring within the Urban Environment: A Case Study in the Port of Naples (Italy)

A Survey Method Towards an Effective Emission Monitoring within the Urban Environment: A Case Study in the Port of Naples (Italy)

Marco Casazza Giorgio Varchetta Nicola Pirozzi Roberta Teta Sergio Ulgiati Massimiliano Lega

University of Naples Parthenope, Italy

University of Naples Federico II, Italy

Page: 
1-13
|
DOI: 
https://doi.org/10.2495/EI-V1-N1-1-13
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

OPEN ACCESS

Abstract: 

Pollution monitoring in the urban environment is an issue of paramount importance both for public health and for the environment, and in relation to the need of finding adequate solutions towards a more sustainable lifestyle. This is particularly true in the case of areas where specific activities or intense emissions occur. This is the case, for example, of ports. In fact, harbours are important for economic and social development of coastal areas, but they also represent an anthropogenic source of emissions, often located near urban centres and industrial areas. In order to define the characteristics and the boundaries of these critical areas, a method for conducting a survey has been defined and tested. The purpose of this work is to define a methodological approach for particulate matter (PM) monitoring of a given extended source. This article introduces a specific case study in the port of Naples (Southern Italy). A preliminary survey approach for defining the setup and operational conditions for a monitoring network has been defined. In this research a key role is played by the use of innovative devices, having a higher spatial and temporal resolution with respect to standard reference instruments, which already proved to be effective means in supporting the survey actions.

Keywords: 

3D monitoring, air pollution, environmental monitoring, harbour, PM, port

  References

[1] Davis, D.L., Bell, M.L. & Fletcher, T., A look back at the London Smog of 1952 and the half century since. Environmental Health Perspectives, 110(12), p. A734, 2002. DOI: 10.1289/ehp.110-a734

[2] Pope, C.A. & Dockery, D.W., Health effects of fine particulate air pollution: Lines that connect. Journal of the Air and Waste Management Association, 56, pp. 709–742, 2006. DOI: 10.1080/10473289.2006.10464485

[3] Puustinen, A., Hämeri, K., Pekkanen, J., Kulmala, M., de Hartog, J., Meliefste, K., ten Brink, H., Kos, G., Katsouyanni, K., Karakatsani, A., Kotronarou, A., Kavouras, I., Meddings, C., Thomas, S., Harrison, R., Ayres, J.G., van der Zee, S. & Hoek, G., Spatial variation of particle number and mass over four European cities. Atmospheric Environment,41, pp. 6622–6636, 2007. DOI: 10.1016/j.atmosenv.2007.04.020

[4] Kawanaka, Y., Matsumoto, E., Sakamoto, K. & Yun, S.J., Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere. Science of the Total Environment, 409, pp. 1033–1038, 2011. DOI: 10.1016/j.scitotenv.2010.11.035

[5] Gualtieri, M., Ovrevik, J., Holme, J.A., Perrone, M.G., Bolzacchini, E., Schwarze, P.E. & Camatini, M., Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicology In Vitro, 24, pp. 29–39, 2010. DOI: 10.1016/j.tiv.2009.09.013

[6] Schilirò, T., Alessandria, L., Degan, R., Traversi, D. & Gilli, G., Chemical characterisation and cytotoxic effects in A549 cells of urban-air PM10 collected in Torino, Italy. Environmental Toxicology and Pharmacology, 29, pp. 150–157, 2010. DOI: 10.1016/j.etap.2009.12.005

[7] Bruggemann, E., Gerwig, H., Gnauk, T., Muller, K. & Herrmann, H., Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbside. Atmospheric Environment, 43, pp. 2456–2463, 2009. DOI:10.1016/j.atmosenv.2009.01.054

[8] US Environmental Protection Agency (EPA), Air Quality Criteria for Particulate Matter, U.S. Environmental Protection Agency Office for Research and Development, EPA/600/P-95/001aF, available at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2832 (accessed 19 December 2016).

[9] Billet, S., Abbas, I., Le Goff, J., Verdin, A., Andre, V., Lafargue, P.E., Hachimi, A., Cazier, F., Sichel, F., Shirali, P. & Garcon, G., Genotoxic potential of polycyclic aromatic hydro-carbons-coated onto airborne particulate matter (PM(2.5)) in human lung epithelial a549 cells. Cancer Letters, 270, pp. 144–155, 2008. DOI: 10.1016/j.canlet.2008.04.044

[10] Traversi, D., Degan, R., De Marco, R., Gilli, G., Pignata, C., Villani, S. & Bono, R., Mutagenic properties of PM2.5 urban pollution in the Northern Italy: The nitrocompounds contribution. Environment International, 35, pp. 905–910, 2009. DOI: 10.1016/j.envint.2009.03.010

[11] Casazza, M., Maurino, V. & Malandrino, M., Adult chronic exposure to neurotoxic metals associated with atmospheric aerosols: A case study in the urban area of Turin (NW Italy). Journal of Environmental Accounting and Management, 4(1), pp. 87–99, 2016. DOI: 10.5890/JEAM.2016.03.008

[12] Maher, B.A., Ahmed, I.A.M., Karloukovski, V., MacLaren, D.A., Foulds, P.G., Allsop, D., Mann, D.M.A., Torres-Jardón, R. & Calderon-Garciduenas, L., Magnetite pollution nanoparticles in the human brain. PNAS, 113(39), pp. 10797–10801, 2016. DOI: 10.1073/pnas.1605941113

[13] Montgomery, M.R., The urban transformation of the developing world. Science, 319, pp. 761–764, 2008. DOI: 10.1126/science.1153012

[14] Zhang, D., Liu, J. & Li, B., Tackling air pollution in China – What do we learn from the Great Smog of 1950s in London. Sustainability, 6, pp. 5322–5338, 2014. DOI: 10.3390/su6085322

[15] Wallace, J., Corr, D. & Kanaroglou, P., Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Science of the Total Environment, 408, pp. 5086–5096, 2010. DOI: 10.1016/j.scitotenv.2010.06.020

[16] Kelly, K.E., Jaramillo, I.C., Quintero-Nunez, M., Wagner, D.A., Collins, K., Meuzelaar, H.L. & Lighty, J.S., Low-wind/high particulate matter episodes in the Calexico/Mexicali region. Journal of the Air and Waste Management Association, 60, pp. 1476–1486, 2010. DOI:10.3155/10473289.60.12.1476

[17] Casazza, M., Gilli, G., Piano, A. & Alessio, S., Thirty-years assessment of size-Fractionated particle mass concentrations in a polluted urban area and its implications for the regulatory framework. Journal of Environmental Accounting and Management, 1(3), pp. 48–57, 2013. DOI: 10.5890/JEAM.2013.08.004

[18] Casazza, M., Possibility of secondary sub-micron aerosol mass concentrations forecasting: A case study toward the possibility of a future nowcasting approach. Journal of Environmental Accounting and Management, 3(1), pp. 59–67, 2015. DOI: 10.5890/JEAM.2015.03.005

[19] Behera, S.M. & Sharma, M., Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: an environmental chamber study. Atmospheric Environment, 45, pp. 4015–4024, 2011. DOI: 10.1016/j.atmosenv.2011.04.056

[20] Ledoux, F., Courcot, L., Courcot, D., Aboukaïs, A. & Puskaric, E., A summer and winter apportionment of particulate matter at urban and rural areas in northern France. Atmospheric Research, 82, pp. 633–642, 2006. DOI: 10.1016/j.atmosres.2006.02.019

[21] Croft, B., Lohmann, U., Martin, R.V., Stier, P., Wurzler, S., Feichter, J., Hoose, C., Heikkil, U., van Donkelaar, A. & Ferrachat, S., Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmospheric Chemistry and Physics, 10, pp. 1511–1543, 2010. DOI: 10.5194/acp-10-1511-2010

[22] Mircea, M., Stefan, S. & Fuzzi, S., Precipitation scavenging coefficient: Influence of measured aerosol and raindrop size distributions. Atmospheric Environment, 34, pp. 5169–5174, 2000. DOI: 10.1016/S1352-2310(00)00199-0

[23] Chaubey, J.P., Moorthy, K.K., Babu, S.S., Nair, V.S. & Tiwari, A., Black carbon aerosols over coastal Antarctica and its scavenging by snow during the Southern Hemispheric summer. Journal of Geophysical Research, 115(D10), pp. 2156–2202, 2010. DOI: 10.1029/2009JD013381

[24] Lu, C., Niu, S., Tang, L., Lv, J., Zhao, L. & Zhu, B., Chemical composition of fog water in Nanjing area of China and its related fog microphysics. Atmospheric Research, 97, pp. 47–69, 2010. DOI: 10.1016/j.atmosres.2010.03.007

[25] Agrawal, H., Welch, W.A., Miller, J.W. & Cocker, D.R., Emission measurements from a crude oil tanker at Sea. Environmental Science & Technology, 42, pp. 7098–7103, 2008. DOI: 10.1021/es703102y

[26] Eyring, V., Isaksen, I.S.A., Berntsen, T., Collins WJ, Corbett JJ, Endresen O, Oyvind Endresen, O., Grainger, R.G., Moldanova, J., Schlager, H. & Stevenson, D.S., Transport impacts on atmosphere and climate: shipping. Atmospheric Environment, 44, pp. 4735–4771, 2010. DOI: 10.1016/j.atmosenv.2009.04.059

[27] Healy, R.M., O’Connor, I.P., Hellebust, S., Allanic, A., Sodeau, J.R. & Wenger, J.C., Characterisation of single particles from in-port ship emissions. Atmospheric Environment, 43, pp. 6408–6414, 2009. DOI: 10.1016/j.atmosenv.2009.07.039

[28] Eyring, V., Köhler, H.W., van Aardenne, J. & Lauer, A., Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research, 110(D17), pp. 2156–2202, 2005. DOI: 10.1029/2004JD005619

[29] Saxe, H. & Larsen, T., Air pollution from ships in three Danish ports. Atmospheric Environment, 38, pp. 4057–4067, 2004. DOI: 10.1016/j.atmosenv.2004.03.055

[30] Dalsøren, S.B., Eide, M.S., Endresen, Ø., Mjelde, A., Gravir, G. & Isaksen, I.S.A., Update on emissions and environmental impacts from the international fleet of ships: the contribution from major ship types and ports. Atmospheric Chemistry & Physics, 9, pp. 2171–2194, 2009. DOI:10.5194/acp-9-2171-2009

[31] Dore, A.J., Vieno, M., Tang, Y.S., Dragosits, U., Dosio, A., Weston, K.J. & Sutton, M.A., Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 41, pp. 2355–2367, 2007. DOI: 10.1016/j.atmosenv.2006.11.013

[32] Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe; B., de Vlieger, I. & van Aardenne, J., Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment, 90, pp. 96–105, 2014. DOI: 10.1016/j.atmosenv.2014.03.046

[33] Berechman, J. & Tseng, P.-H., Estimating the environmental costs of port related emissions: The case of Kaohsiung. Transportation Research Part D, 17, pp. 35–38, 2012. DOI: 10.1016/j.trd.2011.09.009

[34] Zhao, M., Yan Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yua, Q. & Chen, L., Characteristics and ship traffic source identification of air pollutants in China’s largest port. Atmospheric Environment, 64, pp. 277–286, 2013. DOI: 10.1016/j.atmosenv.2012.10.007

[35] Cesari, D., Genga, A., Ielpo, P., Siciliano, M., Mascolo, G., Grasso, F.M. & Contini, D., Source apportionment of PM2.5 in the harbour-industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions. Science of the Total Environment, 497–498, pp. 392–400, 2014. DOI: 10.1016/j.scitotenv.2014.08.007

[36] Sofowote, U.M., Rastogi, A.K., Debosz, J. & Hopke, P.K., Advanced receptor modeling of near–real–time, ambient PM2.5 and its associated components collected at an urban-industrial site in Toronto, Ontario. Atmospheric Pollution Research, 5, pp. 13–23, 2014. DOI:10.5094/APR.2014.003

[37] Marenco, L. & Cantillo, V., A framework to evaluate particulate matter emissions in bulk material ports: Case study of Colombian coal terminals. Maritime Policy & Management, 42(4), pp. 335–361, 2015. DOI: 10.1080/03088839.2013.877171

[38] Prati, M.V., Costagliola, M.A., Quaranta, F. & Murena, F., Assessment of ambient air quality in the port of Naples. Journal of the Air & Waste Management Association, 65(8), pp. 970–979, 2015. DOI: 10.1016/j.atmosenv.2012.10.007

[39] US Environmental Protection Agency (EPA), Guidance for Network Design and Optimum Site Exposure for PM2.5 and PM10, U.S. Environmental Protection Agency, Office of Air Quality and Standars, EPA-454/R-99-022, available at www3.epa.gov/ttnamti1/files/ambient/pm25/network/r-99-022.pdf (accessed 19 December 2016).

[40] Pinto, J.P., Lefohn, A.S., & Shadwick, D.S., Spatial variability of PM2.5 in urban areas in the United States. Journal of the Air and Waste Management Association, 54(4), pp. 440–449, 2004. DOI: 10.1080/10473289.2004.10470919

[41] Muller, C.L., Chapman, L., Grimmond, C.S.B., Young, D.T. & Cai, X., Sensors and the city: A review of urban meteorological networks. International Journal of Climatology, 33, pp. 1585–1600, 2013. DOI: 10.1002/joc.3678

[42] Chiri, G.M. & Giovagnorio, I., The role of the city’s shape in urban sustainability. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 3(3), pp. 245–258, 2012.

[43] Schweizer, C., Edwards, R.D., Bayer-Oglesby, L., Gauderman, W.J., Ilacqua, V., Jantunen, M.J., Lai, H.K., Nieuwenhuijsen, M. & Künzli, N., Indoor time-microenvironment-activity patterns in seven regions of Europe. Journal of Exposure Science and Environmental Epidemiology, 17, pp. 170–181, 2007. DOI: 10.1038/sj.jes.7500490

[44] Mohammed, M.O.A., Song, W.-W., Ma, W.-L., Li, W.-L., Ambuchi, J.J., Thabit, M. & Li, Y.-F., Trends in indoor–outdoor PM2.5 research: A systematic review of studies conducted during the last decade (2003–2013). Atmospheric Pollution Research, 6(5), pp. 893–903, 2015. DOI: 10.5094/APR.2015.099

[45] Erisman, J.W., Weijers, E., Khlystov, A. & Kos, G., Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit. Atmospheric Environment,38, pp. 2993–3002, 2004. DOI: 10.1016/j.atmosenv.2004.02.045

[46] Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik, 155(2), pp. 206–222, 1959. DOI: 10.1007/BF01337937

[47] Errico, A., Angelino, C.V., Cicala, L., Persechino, G., Ferrara, C., Lega, M., Vallario, A., Parente, C., Masi, G., Gaetano, R., Scarpa, G., Amitrano, D., Ruello, G., Verdoliva, L. & Poggi, G., Detection of environmental hazards through the feature-based fusion of 

optical and SAR data: A case study in southern Italy. International Journal of Remote Sensing, 36(13), pp. 3345–3367, 2015 DOI: 10.1016/S0262-8856(03)00137-9

[48] Lega, M. & Persechino, G., GIS and infrared aerial view: Advanced tools for the early detection of environmental violations. WIT Transactions on Ecology and the Environment, 180, pp. 225–235, 2014. DOI: 10.2495/WM140191

[49] Lega, M., Ferrara, C., Persechino, G. & Bishop, P., Remote sensing in environmental police investigations: Aerial platforms and an innovative application of thermography to detect several illegal activities. Environmental Monitoring and Assessment, 186(12), pp. 8291–8830, 2014. DOI: 10.1007/s10661-014-4003-3

[50] Persechino, G., Lega, M., Romano, G., Gargiulo, F. & Cicala, L., IDES project: An advanced tool to investigate illegal dumping. WIT Transactions on Ecology and the Environment, 173, 603–614, 2013. DOI: 10.2495/SDP130501

[51] Lega, M., D’Antonio, L. & Napoli, R.M.A., Cultural heritage and waste heritage: Advanced techniques to preserve cultural heritage, exploring just in time the ruins produced by disasters and natural calamities. WIT Transactions on Ecology and the Environment, 140, 123–134, 2010. DOI: 10.2495/WM100121

[52] Persechino, G., Schiano, P., Lega, M., Napoli, R.M.A., Ferrara, C. & Kosmatka, J., Aerospace-based support systems and interoperability: The solution to fight illegal dumping. WIT Transactions on Ecology and the Environment, 140, pp. 203–214, 2010. DOI: 10.2495/WM100191

[53] Lega, M. & Napoli, R.M.A., A new approach to solid waste landfill aerial monitoring. WIT Transactions on Ecology and the Environment, 109, pp. 193–199, 2008. DOI: 10.2495/WM080211

[54] Teta, R., Della Sala, G., Glukhov, E., Gerwick, L., Gerwick, W.H., Mangoni, A. & Costantino, V., Combined LC-MS/MS and molecular networking approach reveals new cyanotoxins from the 2014 cyanobacterial bloom in Green Lake, Seattle. Environmental Science and Technology, 49(24), pp. 14301–14310, 2015. DOI: 10.1021/acs.est.5b04415

[55] Costantino, V., Fattorusso, E., Imperatore, C., Mangoni, A. & Teta, R., Amphiceramide A and B, novel glycosphingolipids from the marine sponge Amphimedon compressa. European Journal of Organic Chemistry, 13, pp. 2112–2119, 2009. DOI: 10.1002/ejoc.200801230

[56] Teta, R., Della Sala, G., Mangoni, A., Lega, M. & Costantino, V., Tracing cyanobacte-rial blooms to assess the impact of wastewaters discharges on coastal areas and lakes. International Journal of Sustainable Development and Planning, 11(5), pp. 804–811, 2016. DOI: 10.2495/SDP-V11-N5-804-811

[57] Pasquill, F., Atmospheric Diffusion. Ellis Horwood Limited: Chichester, 1974.