From Natural Branchings To Technical Joints: Branched Plant Stems as Inspiration for Biomimetic Fibre-Reinforced Composites

From Natural Branchings To Technical Joints: Branched Plant Stems as Inspiration for Biomimetic Fibre-Reinforced Composites
Page: 
144-153
|
DOI: 
https://doi.org/10.2495/DNE-V8-N2-144-153
| | | Citation

OPEN ACCESS

Abstract: 

The manufacturing of nodal elements and/or ramifi cations with an optimised force fl ow is one of the major challenges in many areas of fi bre-reinforced composite technology. The examples include hubs of wind-power plants, branching points of framework constructions in building industry, aerospace, ramifi ed vein prostheses in medical technology or the connecting nodes of axel carriers. Addressing this problem requires the adaptation of innovative manufacturing techniques and the implementation of novel mechanically optimised fi bre-reinforced structures. Consequently, the potential of hierarchically structured plant ramifi cations as concept generators for innovative, biomimetic branched fi bre-reinforced composites was assessed by morphological and biomechanical analyses. Promising biological models were found in monocotyledons with anomalous secondary growth, i.e. Dracaena and Freycinetia, as well as in columnar cacti such as Oreocereus and Corryocactus. These plants possess ramifi cations with a pronounced fi bre matrix structure and a special hierarchical stem organization, which markedly differs from those of other woody plants by consisting of isolated fi bres and/or wood strands running in a partially lignifi ed parenchymatous matrix. The angles of the Y- and T-shaped ramifi cations in plants resemble those of the branched technical structures. Our investigations confi rm that the ramifi cations possess mechanical properties promising for technical applications, such as a benign fracture behaviour, a good oscillation damping caused by high energy dissipation and a high potential for lightweight construction. The results demonstrate the high potential for a successful technical tran sfer and led to the development of concepts for producing demonstrators in lab-bench and pilot plant scale that already incorporate ‘solutions inspired by nature’.

Keywords: 

 Branched fi bre-reinforced composites, columnar cacti, lightweight, monocotyledons, Y- and T-shaped ramifi cations

  References

[1] Masselter, T., Barthlott, W., Bauer, G. et al. Biomimetic products (Chapter 12). Biomimetics - Nature Based Innovation, ed. Y. Bar-Cohen, CRC Press: Boca Raton, London and New York, pp. 377–429, 2012.

[2] Masselter, T. & Speck, T., Biomimetic fi bre-reinforced compound materials (Chapter 9).  Advances in Biomimetics, ed. A. George, INTECH: Rijeka, pp. 185–210, 2011.

[3] Forcechange.com, available at http://forcechange.com/1726/when-windmills-explode/, (accessed 08 February 2013, 15:34).

[4] Speck, T., Harder, D. & Speck, O., Gradient materials and self-repair: learning technology from biology. VDI-Report, B4284, pp. 1–13, 2007.

[5] Ehrenstein, G.W., Faserverbund-Kunststoffe: Werkstoffe, Verarbeitung, Eigenschaften, Hanser Fachbuchverlag: Muenchen, 2006.

[6] Speck, T. & Speck, O., Process sequences in biomimetic research. Design and Nature IV, ed. C.A. Brebbia, WIT Press: Southampton, pp. 3–11, 2008.

[7] VDI Guideline 6220 ‘Biomimetics – Conception and Strategy. Differences between bionic and convential products’. Beuth: Berlin, 2012.

[8] VDI Guideline 6223 ‘Biomimetics - Materials, structures and components’. (Offi cial draft) Beuth: Berlin, 2012.

[9] Masselter, T., Eckert, S. & Speck, T., Functional morphology, biomechanics and biomimetic potential of stem–branch connections of Dracaena refl exa and Freycinetia insignis. Beilstein Journal of Nanotechnology, 2, pp. 173–185, 2011. doi: http://dx.doi.org/10.3762/bjnano.2.21

[10] Masselter, T. & Speck, T., From stems to sticks – what can we learn for biomimetics from natural fi bre-reinforced structures? Proceedings of the 6th Plant Biomechanics Conference, ed. B. Thibaut, ECOFOG: Cayenne, pp. 357–366, 2009.

[11] Haushahn, T., Fink, S., Masselter, T. & Speck, T., General biomechanics and functional morphology of Dracaena marginata. Proceedings of the 7th Plant Biomechanics Conference, ed. M. Fournier, INRA: Clermont-Ferrand, pp. 203–206, 2012.

[12] Haushahn T., Schwager, H., Neinhuis, C., Speck T. & Masselter T., Plant ramifi cations inspire branched lightweight composites. Bioinspired, Biomimetic and Nanobiomaterials, 1, pp. 77–81, 2012. doi: http://dx.doi.org/10.1680/bbn.11.00011

[13] Schwager, H., Masselter T., Speck T. & Neinhuis, C., Functional morphology and  biomechanics of branch-stem junctions in columnar cacti. Proceedings of the Royal Society B (accepted  September 2013).

[14] Schwager, H. & Neinhuis, C., Functional branching morphology of arborescent columnar  cacti. Proceedings of the 7th Plant Biomechanics Conference, ed. M. Fournier, INRA:  Clermont-Ferrand, p. 221, 2012.

[15] Cichy, F., Gude, M., Danczak, M., Hufenbach, W., Schwager, H. & Neinhuis, C.,  Simulation of branched biological structures for bionic fi bre-reinforced components. Kompozyty, 11, pp. 304–309, 2011.

[16] Wenzlaff, M., Numerical analysis of the fi brous structure of columnar cacti. Student thesis, TU Dresden, 2013.

[17] Beismann, H., Wilhelmi, H., Baillères, H., Spatz, H.-C., Bogenrieder, A. & Speck, T., Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance. Journal of Experimental Botany, 51, pp. 617–633, 2000. doi: http://dx.doi.org/10.1093/jexbot/51.344.617

[18] Müller, L., Gruhl, A., Böhm, H. et al., Biomimetisch optimierte verzweigte Faserverbundstrukturen mit hoher Tragfähigkeit. Melliand Textilberichte, 2, pp. 88–93, 2013.

[19] Lepper, M., Renner, O., Gruhl, A. & Hufenbach, W., Die Flechttechnologie – Zukunftsträchtiges Verfahren für die Fertigung komplexer Faserverbund Hohlstrukturen. Lightweight Design, 2, pp. 44–48, 2013.

[20] Drechsler, K., Composites im Flugzeug- und Automobilbau. Conference proceedings of  Denkendorfer Kolloquien, Technische Textilien, Denkendorf, 2001.

[21] Hufenbach, W., Blazejewski, W., Kroll, L., Böhm, R., Gude, M. & Czulak, A., Manufacture and multi-axial test of composite tube specimen with braided glass fi bre reinforcement. Journal of Material Processing Technology, 162/163, pp. 65–70, 2005. doi: http://dx.doi.org/10.1016/ j.jmatprotec.2005.02.212

[22] Cherif, C., Diestel, O. & Gries, T., Textile Halbzeuge und Halbzeugfertigung. Textile V erbundbauweisen und Fertigungstechnologien für Leichtbaustrukturen des Fahrzeug- und  Maschinenbaus, ed. W. Hufenbach, SDV - Die Medien AG: Dresden, 2007.

[23] Hufenbach, W., Textile Verbundbauweisen und Fertigungstechnologien für Leichtbaustrukturen des Maschinen- und Fahrzeugbaus. SDV - Die Medien AG: Dresden, 2007.

[24] Gruhl, A., Hanke, ‚U., Seliger, T. Hufenbach, W., Lepper, M. & Renner, O., Mechanische  Vorrichtung zur Realisierung einer Öffnung mit veränderlicher Öffnungsweite. Patent DE 10 2011 006 647.0 (date of publication: 01.04.2012). 

[25] Speck, O., Milwich, M., Harder, D. & Speck, T., Vom biologischen Vorbild zum technischen Produkt: der “technische Pfl anzenhalm“. Museo, 22, pp. 96–103, 2005.

[26] Milwich, M., Speck, T., Speck, O., Stegmaier, T. & Planck, H., Biomimetics and technical textiles: solving engineering problems with the help of nature’s wisdom. American Journal of Botany, 93, pp. 1455–1465, 2006. doi: http://dx.doi.org/10.3732/ajb.93.10.1455

[27] Milwich, M., Planck, H., Speck, T. & Speck, O., Der technische Pfl anzenhalm: ein  bionisches Schmaltextil. Melliand Textilberichte – Band- und Flechtindustrie, 44, pp. 34–38, 2007.