Investigation of Pulsatile Flow in the Upper Human Airways

Investigation of Pulsatile Flow in the Upper Human Airways

G. Eitel T. Soodt W. Schröder

Institute of aerodynamics, Rwth aachen university, Wüllnerstrasse 5a, 52062 aachen, germany.

Page: 
335-353
|
DOI: 
https://doi.org/10.2495/DNE-V5-N4-335-353
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The pulsatile flow field in the human lung is numerically and experimentally investigated. The realistic lung geometry of a human subject was acquired down to the sixth generation of bifurcation and used as a tracheobronchial model. The numerical analysis is based on a Lattice–Boltzmann method which is particularly suited for flows in extremely intricate geometries such as the upper human airways. The measurements are performed via the particle-image velocimetry method in a transparent cast generated from the original dataset. Experimental and numerical results are analyzed in a comparative way and a thorough discussion of the three-dimensional flow structures emphasizes the unsteady character of the flow field. It is evidenced that the asymmetric geometry of the human lung plays a significant role for the development of the flow field in the respiratory system. Secondary vortex structures and their temporal formation are analyzed and described in detail for two respiration frequencies. It is shown that the qualitative structure of the intricate flow field does not vary if a critical mass flux rate is exceeded. At inspiration, the primary flow shows separated flow regions and is highly influenced by secondary flow structures. By contrast, at expiration the primary flow distribution is far more homogeneous with a higher level of vorticity.

Keywords: 

counter-rotating vortices, human airways, Lattice–Boltzmann method, particle-image velocimetry, pulsatile flow, transparent lung cast

  References

[1] Zhao, Y. & Lieber, B.B., Steady expiratory flow in a model symmetric bifurcation. Journal of Biomechanical Engineering, 116(3), pp. 318–323, 1994. doi:10.1115/1.2895737

[2] comer, J.K., Kleinstreuer, c. & Kim, c.S., flow structures and particle desposition patterns in double-bifurcation airway models. Part 1. air flow fields. Journal of Fluid Mechanisms, 435, pp. 25–54, 2001. doi:10.1017/S0022112001003809

[3] liu, y., So, r.m.c. & zhang, c.h., modelling the bifurcating flow in a human lung airway. Journal of Biomechanics, 35(4), pp. 465–473, 2003. doi:10.1016/S0021-9290(01)00225-1

[4] van Ertbruggen, c., hirsch, c. & Paiva, m., anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. Journal of applied physiology, 98, pp. 970–980, 2005. doi:10.1152/japplphysiol.00795.2004

[5] Weibel, E., Morphometry of the Human Lung. Springer: berlin, 1963.

[6] zhang, z., Kleinstreuer, c. & Kim, c.S., gas-solid two-phase flow in a triple bifurcation lung airway model. International Journal of Multiphase Flow, 28(6), pp. 1021–1046, 2002. doi:10.1016/S0301-9322(02)00011-3

[7] li, z., Kleinstreuer, c. & zhang, z., Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. Journal of Aerosol Science, 38(6), pp. 625–644, 2007. doi:10.1016/j.jaerosci.2007.03.010

[8] Nowak, N., Kakade, P.P. & annapragada, a.V., computational fluid dynamics simulation of airfoil and aerosol deposition in human lungs. Annals of Biomedical Engineering, 31, pp. 374–390, 2003. doi:10.1114/1.1560632

[9] lin, c.l., Tawhai, m.h., mclennan, g. & hoffman, E.a., characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respiratory Physiology & Neurobiology, 157(2–36), pp. 295–309, 2007.

[10] große, S., Schröder, W., Klaas, m., Klöckner, a. & roggenkamp, J., Time resolved analysis of steady and oscillating flow in the upper human airways. Experiments in Fluids, 42, pp. 955–970, 2007. doi:10.1007/s00348-007-0318-y

[11] große, S., Schröder, W. & Klaas, m., Time-resolved PIV measurements of vortical structures in the upper human airways. Particle Image Velocimetry, volume 112/2008 of Topics in  Applied Physics, Springer: berlin/heidelberg, pp. 35–53, 2008.

[12] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford university Press: Oxford, 2001.

[13] ball, c.g., uddin, m. & Pollard, a., mean flow structures inside the human upper airway. Flow, Turbulence and Combustion, 81, pp. 155–188, 2008. doi:10.1007/s10494-007-9113-3

[14] freitas, r.K. & Schröder, W., Numerical investigation of the three-dimensional flow in a  human lung model. Journal of Biomechanics, 41, pp. 2446–2457, 2008. doi:10.1016/j. jbiomech.2008.05.016

[15] hartmann, D., meinke, m. & Schröder, W., an adaptive multilevel multigrid formulation for cartesian hierarchical grid methods. Computation Fluids, 37, pp. 1103–1125, 2008. doi:10.1016/j.compfluid.2007.06.007

[16] Truckenbrodt, E., Fluidmechanik 1. Springer-Verlag: berlin, 1996.

[17] Dean, W.r., Note on the motion of fluid in a curved pipe. Philosophical Magazine, 20, pp. 208–23, 1927.

[18] Dean, W.r., The streamline motion of fluid in a curved pipe. Philosophical Magazine, 30, pp. 673–93, 1928.

[19] berger, S.a. & Talbot, l., flow in curved pipes. Annual Review of Fluid Mechanisms, 15, pp. 461–512, 1983. doi:10.1146/annurev.fl.15.010183.002333

[20] rütten, f., Schröder, W. & meinke, m., large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Physics of Fluids, 17(035107), pp. 1–11, 2005.

[21] Womersley, J.r., An elastic tube theory of pulse transmission an oscillatory flow in  mammalian arteries. Technical report, Wright air Development center, 1957.

[22] frisch, u., hasslacher, b. & Pomeau, y., lattice-gas automata for the Navier Stokes equation. Physical Review Letters, 56(14), pp. 1505–1508, 1986. doi:10.1103/Physrevlett.56.1505 [23] benzi, r., Succi, S. & Vergassola, m., The lattice boltzmann equation: theory and  applications. Physics Reports, 222(No. 3), pp. 145–197, 1992. doi:10.1016/0370-1573(92)90090-m

[24] chen, S. & Doolen, g.D., lattice boltzmann method for fluid flows. Annual Review of Fluid Mechanisms, 30, pp. 329–364, 1998. doi:10.1146/annurev.fluid.30.1.329

[25] bhatnagar, P.l., gross, E.P. & Krook, m., a model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), pp. 511–525, 1954. doi:10.1103/Physrev.94.511

[26] hänel, D., Molekulare Gasdynamik, Springer: berlin, 2004.

[27] Qian, y.h., D’humieres, D. & lallemand, P., lattice bgK models for Navier–Stokes  equations. Europhysics Letters, 17(6), pp. 479–484, 1992. doi:10.1209/0295-5075/17/6/001

[28] zou, Q., hou, S., chen, S. & Doolen, g.D., an improved incompressible lattice boltzmann model for time-independent flows. Journal of Statistical Physics, 81(1–2), pp. 35–48, 1995. doi:10.1007/bf02179966

[29] bouzidi, m., firdaouss, m. & lallemand, P., momentum transfer of a boltzmann–lattice fluid with boundaries. Physics of Fluids, 13(11), pp. 3452–3459, 2001. doi:10.1063/1.1399290