Stress-strain Distribution in the Human Stomach

Stress-strain Distribution in the Human Stomach

N.R. Akhmadeev R. Miftahof

Kazan Medical University, Kazan, Tatarstan, Russian Federation.

Arabian Gulf University, Kingdom of Bahrain.

Page: 
90-107
|
DOI: 
https://doi.org/10.2495/DNE-V5-N2-90-107
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

A biomechanical model of the human stomach is proposed, that is based on detailed biological data of the structure and function of the organ. The process of electromechanical conjugation and the spread of the electromechanical wave along the stomach wall were analyzed numerically. Results revealed patterns of stress-strain distribution in the organ. Thus the fundus, the body and the antrum of the organ always experience biaxial stress-strain states, while the cardia and the pylorus undergo uniaxial loading. The circular smooth muscle layer produced greater total forces throughout in comparison to the outer longitudinal smooth muscle layer. The body of the organ along the lesser curvature and the cardia-fundus areas were overstressed compare to other regions. Although the theoretical results resemble qualitatively patterns of electrical and mechanical activity observed in vivo and in vitro there is currently no affirmative experimental evidence to provide a detailed quantitative comparison of the results.

Keywords: 

mathematical model, human stomach, numerical simulations, electromechanical activity, peristalsis

  References

[1] Cowin, S.C., How is a tissue built? Transactions of ASME, Journal of Biomechanical Engineering, 122, pp. 553–559, 2000. doi:10.1115/1.1324665

[2] Humphrey, J.D., Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society, Ser. A, 459, pp. 3–46, 2003.

[3] Hiroshi, Y., Strength of Biological Materials, Williams & Wilkins, 1970.

[4] Miftakhov, R.N., Influence in the ion concentration changes on excitation propagation and mechanical response in smooth muscle. Mechanics of Biological Solids, The Academy of Sciences of the USSR, pp. 81–101, 1986 (in Russian).

[5] Miftakhov, R.N., Applications of the theory of soft thin shells in problems of biomechanics. Biomechanics: Problems and Investigations, Zinatne: Riga, Vol. VI, pp. 51–56, 1988.

[6] Pullan, A., Cheng, L., Yassi, R. & Buist, M., Modelling gastrointestinal bioelectric  activity. 

Progress in Biophysics and Molecular Biology, 85, pp. 523–550, 2004. doi:10.1016/j. pbiomolbio.2004.02.003

[7] Cheng, L., Komuro, R., Austin, T.M., Buist, M.L. & Pullan A.J., Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World Journal of Gastroenterology, 13, pp. 1378–1383, 2007.

[8] Corrias, A. & Buist, M.L., A quantitative model of gastric smooth muscle cellular activation. Annals of Biomedical Engineering, 35, pp. 1595–1607, 2007. doi:10.1007/s10439-007-9324-8  [9] Pal, A., Brasseur, J. & Abrahamsson, B., A stomach road or “Magenstrasse” for gastric emptying. Journal of Biomechanics, 40, pp. 1202–1210, 2007. doi:10.1016/j.jbiomech.2006.06.006

[10] Pal, A., Indireshkumar, K., Schwizer, W., Abrahamsson, B., Fried, M. & Brasseur, J.G., Gastric flow and mixing studied using computer simulation. Proceedings of the Royal Society, Ser. B, 271, pp. 2587–2594, 2004.

[11] Miftahof, R., Biomechanics of the Small Intestine, POSTECH University Press: Rep. Korea, 2005.

[12] Miftahof, R., Nam, H.G. & Wingate D.L., Mathematical Modeling and Simulation in Enteric Neurobiology, World Scientific Publ.: Singapore, 2009

[13] Suzuki, H., Cellular mechanisms of myogenic activity in gastric smooth muscle. Japanese Journal of Physiology, 50, pp. 289–301, 2000. doi:10.2170/jjphysiol.50.289

[14] Hirst, D.G.S. & Suzuki, H., Involvement of interstitial cells of Cajal in the control of smooth muscle excitability. Journal of Physiology, 576, pp. 651–652, 2006. doi:10.1113/jphysiol.2006.121178

[15] Koh, S.D., Ward, S.M., Tamas, O., Sanders, K.M. & Horowitz, B., Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Current Opinion in 

Pharmacology, 3, pp. 579–582, 2003. doi:10.1016/j.coph.2003.09.002

[16] Carniero, A.A., Baffa, O. & Oliveira, R.B., Study of stomach motility using relaxation of magnetic tracers. Physical and Medical Biology, 44, pp. 1691–1697, 1999. doi:10.1088/0031-9155/44/7/309

[17] Muraki, K., Imaizumi, Y. & Watanabe, M., Sodium currents in smooth musclecells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. Journal of Physiology, 442, 351–375, 1991.

[18] Ou, Y., Strege, P., Miller, S.M., Makielski, J., Ackerman, M., Gibbons, S.J. & Farrugia, G., Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. Journal of Biological Chemistry, 278, pp. 1915–1923, 2003. doi:10.1074/jbc.M209938200

[19] Lyford, G.L., Strege, P.R., Shepard, A., Ou, Y., Ermilov, L., Miller, S.M., Gibbons, S.J., Rae, J.L., Szurszewski, J.H. & Farrugia, G., Alpha 1C (Cav1.2) L-type calcium channel mediates mechanosensitive calcium regulation. American Journal of Physiology, Cell Physiology, 283, pp. C1001–C1008, 2002. doi:10.1016/j.coph.2003.06.010

[20] Lyford, G.L. & Farrugia, G., Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal. Current Opinion in Pharmacology, 3, pp. 583–587, 2003.

[21] Dickens, E.J., Edwards, F.R. & Hirst, G.D.S., Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach. Journal of Physiology, 531, pp. 827–833, 2001. doi:10.1111/j.1469-7793.2001.0827h.x

[22] Hennig, G.W., Hirst, G.D.S., Park, K.J., Smith, C.B., Sanders, K.M.,Ward, S.M. & Smith, T.K., Propagation of pacemaker activity in the guinea-pig antrum. Journal of Physiology, 556, pp. 585–599, 2004. doi:10.1113/jphysiol.2003.059055

[23] Hirst, G.D.S., Garcia-London, A.P. & Edwards, F.R., Propagation of slow waves in the guinea-pig gastric antrum Journal of Physiology, 571, pp. 165–177, 2006. doi:10.1113/jphysiol.2005.100735 [24] Bárány, M., Biochemistry of Smooth Muscle Contraction, Academic Press, 1996.

[25] Alvarez, W.C. & Zimmermann, A., Movements of the stomach. American Journal of Physiology, 84, pp. 261–270, 1928.

[26] Miftakhov, R.N., Age changes of the ‘quasi-equilibrium’ module of elasticity of the human stomach. Shell Interactions with Fluids, The Academy of Sciences of the USSR, pp. 197–204, 1981 (in Russian).

[27] Miftakhov, R.N., Investigation of the human stomach tissue in uniaxial loading. Hydroelasticity of Shells, The Academy of Sciences of the USSR, pp. 163–171, 1983 (in Russian).

[28] Miftakhov, R.N., Experimental investigation of the stomach tissue in biaxial loading. Invest. in the Theory of Plates and Shells, Kazan State Univ. Press: Kazan, XVIII, pt. I, pp. 35–46, 1985 (in Russian).

[29] Miftakhov, R.N., Micromechanics of tissue fracture in uniaxial elongation. Shell  Interactions with Fluids, The Academy of Sciences of the USSR, pp. 205–214, 1981 (in Russian).

[30] Miftakhov, R.N., Experimental investigations of the stomach under complex loading. Hydroelasticity of Shells, The Academy of Sciences of the USSR, pp. 172–181, 1983 (in Russian).

[31] Egorov, V.I., Schastlivtsev, I.V., Prut, E.V., Baranov, A.O. & Turusov, R.A., Mechanical properties of the human gastrointestinal tract, Journal of Biomechanics, 35, pp. 1417–1425, 2002. doi:10.1016/S0021-9290(02)00084-2

[32] Miftakhov, R.N., Experimental and Numerical Investigations of Soft Shells, PhD Thesis, Kazan State University, Kazan, USSR, 1983 (in Russian).

[33] Liao, D., Gregersen, H., Hausken, T., Gilja, O.H., Mundt, M. & Kassab, G., Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo. Neurogastroenterology & Motility, 16, pp. 315–324, 2004. doi:10.1111/j.1365-2982.2004.00522.x