The Mechanism of Liver Size Control in Mammals: A Novel Animal Study

The Mechanism of Liver Size Control in Mammals: A Novel Animal Study

K. Yoshizato C. Tateno R. Utoh 

PhoenixBio, Kagamiyama, Higashihiroshima, Japan

Osaka City University Gradate School of Medicine, Osaka, Japan

Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinju-ku, Tokyo, Japan

30 June 2009
| Citation



The liver, the organ that metabolizes food and chemicals and delivers nutrients to body tissues, is essential to vertebrate life. The architecture of the liver is adequately designed such that its activity is precisely aligned with individual body requirements, neither over- nor underperforming. Thus, liver weight (Wliver) is correlated with body weight (Wbody). In any vertebrate species, the ratio (RL/B) of Wliver to Wbody is relatively constant among adults with fully functional mature livers. Recently, we created a mouse (chimeric mouse) with a liver composed of xenogenic hepatocytes and showed that the mouse can be used as a novel experimental animal model to study the mechanism of RL/B optimization. Liver tissue is generated via two different processes, embryonic liver organogenesis and liver regeneration in adults, and RL/B is optimized in the course of these biological phenomena. Although liver organogenesis and regeneration have been abundantly studied and mice with chimeric liver have been characterized intensively, very few studies have investigated these biological processes in the mouse model with such chimerism in relation to the regulation of RL/B. In this article, we review these previous studies on liver embryogenesis, regeneration and liver-chimeric mice from a viewpoint of RL/B regulation to make it appeal that the chimeric mouse is a novel and useful animal model to investigate the RL/B optimization at the cellular and molecular levels.


cell cycle, cell proliferation, chimerism, DNA synthesis, hepatocytes, liver organogenesis, liver regeneration, termination of DNA synthesis, xenotransplantation


[1] Van Thiel, D.H., Gavaler, J.S., Kam, I., Francavilla, A., Polimeno, L., Schade, R.R., Smith, J., Diven, W., Pencrot, R.J. & Stazl, T.E., Rapid growth of an intact human liver transplanted into a recipient larger than the donor. Gastroenterology, 93, pp. 1414–1419, 1987.

[2] Kam, I., Lynch, S., Svanas, G., Todo, S., Polimeno, L., Francavilla, A., Penkrot, R.J., Takaya, S., Ericzon, B.G., Starzl, T.E. & Van Thiel, D.H., Evidence that host size determines liver size: studies in dogs receiving orthotopic liver transplants. Hepatology, 7, pp. 362–366, 1987. doi:10.1002/hep.1840070225

[3] Francavilla, A., Zeng, Q., Polimeno, L., Carr, B.I., Sun, D., Porter, K.A., Van Thiel, D.H. & Starzl, T.E., Small-for-size liver transplantation into large recipient: a model of hepatic regeneration. Hepatology, 19, pp. 210–216, 1994. doi:10.1002/hep.1840190131

[4] Stahl, W.R., Organ weights in primates and other mammals. Science, 150, pp. 1039–1042, 1965. doi:10.1126/science.150.3699.1039

[5] Zaret, K.S., Regulatory phases of early liver development: paradigms of organogenesis. Nature Reviews Genetics, 3, pp. 499–512, 2002. doi:10.1038/nrg837

[6] Michalopoulos, G.K., Liver regeneration. Journal of Cellular Physiology, 213, pp. 286–300, 2007. doi:10.1002/jcp.21172

[7] Yoshizato, K., Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin. International Review of Cytology, 260, pp. 213–260, 2007. doi:10.1016/S0074-7696(06)60005-3

[8] Nakatani, K., Okuyama, H., Himahara, Y., Saeki, S., Dong-Ho Kim, Nakajima, Y., Seki, S., Kawada, N. & Yoshizato, K., Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Laboratory Investigations, 84, pp. 91–101, 2004. doi:10.1038/sj.labinvest.3700013

[9] Pertoft, H. & Smedsrød, B., Separation and characterization of liver cells. Cell Separation: Methods and Selected Applications, Vol. 4, eds T.G. Pretlow & T.P. Pretlow, Academic Press: New York, pp. 1–24, 1982.

[10] Lemaigre, F. & Zaret, K.S., Liver development update: new embryo models, cell lineage control, and morphogenesis. Current Opinion in Genetics & Development, 14, pp. 582–590, 2004. doi:10.1016/j.gde.2004.08.004

[11] Jones, C.M., Lyons, K.M. & Hogan, B.L.M., Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development, 111, pp. 531–542, 1991.

[12] Kaestner, K.H., The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle, 4, pp. 1146–1148, 2005.

[13] Smith, W.C. & Harland, R.M., Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell, 70, pp. 829–840, 1992. doi:10.1016/0092-8674(92)90316-5

[14] Jung, J., Zheng, M., Goldfarb, M. & Zaret, K.S., Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science, 284, pp. 1998–2003, 1999. doi:10.1126/science.284.5422.1998

[15] Le Douarin, N.M., An experimental analysis of liver development. Medicine and Biology, 53, pp. 427–455, 1975.

[16] Millauer, B., Wizigmann-Voos, S., Schnürch, H., Martinez, R., Møller, N.P., Risau, W. & Ullrich, A., High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72, pp. 835–846, 1993. doi:10.1016/0092-8674(93)90573-9

[17] Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K.S., Liver organogenesis promoted by endothelial cells prior to vascular function. Science, 294, pp. 559–563, 2001. doi:10.1126/science.1063889

[18] Rossi, J.M., Dunn, N.R., Hogan, B.L.M. & Zaret, K.S., Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes & Development, 15, pp. 1998–2009, 2001. doi:10.1101/gad.904601

[19] Hentsch, B., Lyons, I., Li, R., Hartley, L., Lints, T.J., Adams, J.M. & Harvey, R.P., Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes & Development, 10, pp. 70–79, 1996. doi:10.1101/gad.10.1.70

[20] Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E. & Birchmeier, C., Scatter factor/hepatocyte growth factor is essential for liver development. Nature, 373, pp. 699–702, 1995. doi:10.1038/373699a0

[21] Weinstein, M., Monga, S.P., Liu, Y., Brodie, S.G., Tang, Y., Li, C., Mishra, L. & Deng, C.X., Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on β1-integrin to promote normal liver development. Molecular and Cellular Biology, 21, pp. 5122–5131, 2001. doi:10.1128/MCB.21.15.5122-5131.2001

[22] Shiojiri, N., Analysis of differentiation of hepatocytes and bile duct cells in developing mouse liver by albumin immunofluorescence. Development, Growth & Differentiation, 26, pp. 555–561, 1984. doi:10.1111/j.1440-169X.1984.00555.x

[23] Germain, L., Blouin, M.J. & Marceau, N., Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, α-fetoprotein, albumin, and cell surface exposed components. Cancer Research, 48, pp. 4909–4918, 1988.

[24] Spagnoli, F.M., Amicone, L., Tripodi, M. & Weiss, M.C., Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-Met in the liver. Journal of Cell Biology, 143, pp. 1101–1112, 1998. doi:10.1083/jcb.143.4.1101

[25] Li, J., Ning, G. & Duncan, S.A., Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes & Development, 14, pp. 464–474, 2000.

[26] Kuo, C.J., Conley, P.B., Chen, L., Sladek, F.M., Darnell, J.E., Jr., & Crabtree, G.R., A transcriptional hierarchy involved in mammalian cell-type specification. Nature, 355, pp. 457–461, 1992. doi:10.1038/355457a0

[27] Clotman, F., Lannoy, V.J., Reber, M., Cereghini, S., Cassiman, D., Jacquemin, P., Roskams, T., Rousseau, G.G. & Lemaigre, F.P. The one-cut transcription factor HNF6 is required for normal development of the biliary tract. Development, 129, pp. 1819–1828, 2002.

[28] Stamatoglou, S.C. & Hughes, R.C., Cell adhesion molecules in liver function and pattern formation. FASEB Journal, 8, pp. 420–427, 1994.

[29] Wang, N.D., Finegold, M.J., Bradley, A., Ou, C.N., Abdelsayed, S.V., Wilde, M.D., Taylor, L.R., Wilson, D.R. & Darlington, G.J., Impaired energy homeostasis in C/EBPα knockout mice. Science, 269, pp. 1108–1112, 1995. doi:10.1126/science.7652557

[30] Higgins, G.M. & Anderson, R.M., Experimental pathology of the liver, 1: Restoration of the liver of the white rat following partial surgical removal, Archives of Pathology, 12, pp. 186–202, 1931.

[31] Wagenaar, G.T., Chamuleau, R.A., Pool, C.W., de Haan, J.G., Maas, M.A., Korfage, H.A. & Lamers, W.H., Distribution and activity of glutamine synthase and carbamoylphosphate synthase upon enlargement of the liver lobule by repeated partial hepatectomies, Journal of Hepatology, 17, pp. 397–407, 1993. doi:10.1016/S0168-8278(05)80224-7

[32] Fausto, N., Liver regeneration, Journal of Hepatology, 32, pp. 19–31, 2001. doi:10.1016/S0168-8278(00)80412-2

[33] Taub, R., Liver regeneration 4: Transcriptional control of liver regeneration, FASEB Journal, 10, pp. 413–427, 1996.

[34] Taub, R., Liver regeneration: From myth to mechanism, Nature Reviews Molecular Cell Biology, 5, pp. 836–847, 2004. doi:10.1038/nrm1489

[35] Sokabe, T., Yamamoto, K., Ohura, N., Nakatsuka, H., Qin, K., Obi, S., Kamiya, A. & Ando, J., Differential regulation of urokinase-type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells, American Journal of Physiology, 287, pp. H2027–2034, 2004.

[36] Mars, W.M., Liu, M.L., Kitson, R.P., Goldfarb, R.H., Gabauer, M.K. & Michalopoulos, G.K., Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology, 21, pp. 1695–1701, 1995.

[37] Roselli, H.T., Su, M., Washington, K., Kerins, D.M., Vaughan, D.E. & Russell, W.E., Liver regeneration is transiently impaired in urokinase-deficient mice. American Journal of Physiology, 275, pp. G1472–1479, 1998.

[38] Masumoto, A. & Yamamoto, N., Stimulation of DNA synthesis in hepatocytes by hepa tocyte growth factor bound to extracellular matrix. Biochemical and Biophysical Research Communications, 191, pp. 1218–1223, 1993. doi:10.1006/bbrc.1993.1347

[39] Haruyama, T, Ajioka, I, Akaike, T. & Watanabe, Y., Regulation and significance of hepatocyte derived matrix metalloproteinases in liver remodeling. Biochemical and Biophysical Research Communications, 272, pp. 681–686, 2000. doi:10.1006/bbrc.2000.2837

[40] Kim, T.H., Mars, W.M., Stolz, D.B. & Michalopoulos, G.K., Expression and activation of proMMP-2 and pro-MMP-9 during rat liver regeneration. Hepatology, 31, pp. 75–82, 2000. doi:10.1002/hep.510310114

[41] Olle, E.W., Ren, X., McClintock, S.D., Warner, R.L., Deogracias, M.P., Johnson, K.J. & Colletti, L.M., Matrix metalloproteinase-9 is an important factor in hepatic regeneration after partial hepatectomy in mice. Hepatology, 44, pp. 540–549, 2006. doi:10.1002/hep.21314

[42] Stolz, D.B., Mars, W.M., Petersen, B.E., Kim, T.H. & Michalopoulos, G.K., Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Cancer Research, 59, pp. 3954–3960, 1999.

[43] Paranjpe, S., Bowen, W.C., Bell, A.W., Nejak-Bowen, K., Luo, J.H. & Michalopoulos, G.K., Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology, 45, pp. 1471–1477, 2007. doi:10.1002/hep.21570

[44] Schirmacher, P., Geerts, A., Jung, W., Pietrangelo, A., Rogler, C.E. & Dienes, H.P., The role of Ito cells in the biosynthesis of HGF-SF in the liver. Hepatocyte Growth Factor (HGF-SF) and the c-Met Receptor, eds I.D. Goldberg & E.M. Rosen, Birkhäuser Verlag: Basel, pp. 285–299, 1993.

[45] LeCouter, J., Moritz, D.R., Li, B., Phillips, G.L., Liang, X.H., Gerber, H.P., Hillan, K.J. & Ferrara, N., Angiogenesis-independent endothelial protection of liver: Role of VEGFR-1. Science, 299, pp. 890–893, 2003. doi:10.1126/science.1079562

[46] Pinzani, M., PDGF and signal transduction in hepatic stellate cells. Frontiers of Bioscience, 7, pp. 1720–1726, 2002. doi:10.2741/pinzani

[47] Ross, M.A., Sander, C.M., Kleeb, T.B., Watkins, S.C. & Stolz, D.B. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology, 34, pp. 1135–1148, 2001. doi:10.1053/jhep.2001.29624

[48] Yu, C., Wang, F., Jin, C., Huang, X., Miller, D.L., Basilico, C. & McKeehan, W.L. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. American Journal of Pathology, 163, pp. 1653–1662, 2003.

[49] Roberts, A.B. & Sporn, M.B., Peptide growth factors and their receptors. The Transforming Growth Factors. Handbook of Experimental Pharmacology, Vol. 95, Part I, eds M.B. Sporn & A.B. Roberts, Springer-Verlag: Berlin, pp. 419–472, 1990.

[50] Fausto, N., Mead, J.E., Gruppuso, P.A. & Braun, L., TGF-β in liver development, regeneration, and carcinogenesis. Annals of the New York Academy of Science, 593, pp. 231–242, 1990. doi:10.1111/j.1749-6632.1990.tb16115.x

[51] Ikeda, H., Nagoshi, S., Ohno, A., Yanase, M., Maekawa, H. & Fujiwara, K., Activated rat stellate cells express c-met and respond to hepatocyte growth factor to enhance transforming growth factor β1 expression and DNA synthesis. Biochemical and Biophysical Research Communications, 250, pp. 769–775, 1998. doi:10.1006/bbrc.1998.9387

[52] Ho, J., de Guise, C., Kim, C., Lemay, S., Wang, X.F. & Lebrun, J.J., Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1. Cellular Signalling, 16, pp. 693–701, 2004. doi:10.1016/j.cellsig.2003.11.002

[53] Bouzahzah, B., Fu, M., Iavarone, A., Factor, V.M., Thorgeirsson, S.S. & Pestell, R.G., Trans forming growth factor-β1 recruits histone deacetylase-1 to a p130 repressor complex in transgenic mice in vivo. Cancer Research, 60, pp. 4531–4537, 2000.

[54] Sanderson, N., Factor, V., Nagy, P., Kopp, J., Kondaiah, P., Wakefield, L., Roberts, A.B., Sporn, M.B. & Thorgeirsson, S.S., Hepatic expression of mature transforming growth factor β1 in transgenic mice results in multiple tissue lesions. Proceedings of the National Academy of Sciences USA, 92, pp. 2572–2576, 1995. doi:10.1073/pnas.92.7.2572

[55] Oe, S., Lemmer, E.R., Conner, E.A., Factor, V.M., Leveen, P., Larsson, J., Karlsson, S. & Thorgeirsson, S.S., Intact signaling by transforming growth factor β is not required for termination of liver regeneration in mice. Hepatology, 40, pp. 1098–1105, 2004. doi:10.1002/hep.20426

[56] Romero-Gallo, J., Sozmen, E.G., Chytil, A., Russell, W.E., Whitehead, R., Parks, W.T., Holdren, M.S., Her, M.F., Gautam, S., Magnuson, M., Moses, H.L. & Grady, W.M., Inactivation of TGF-β signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene, 24, pp. 3028–3041, 2005. doi:10.1038/sj.onc.1208475

[57] Yasuda, H., Mine, T., Shibata, H., Eto, Y., Hasegawa, Y., Takeuchi, T., Asano, S. & Kojima, I., Activin A: an autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes. Journal of Clinical Investigations, 92, pp. 1491–1496, 1993. doi:10.1172/JCI116727

[58] Ju, W., Ogawa, A., Heyer, J., Nierhof, D., Yu, L., Kucherlapati, R., Shafritz, D.A. & Bottinger, E.P., Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Molecular and Cellular Biology, 26, pp. 654–667, 2006. doi:10.1128/MCB.26.2.654-667.2006

[59] Ikeda, H., Satoh, H., Yanase, M., Inoue, Y., Tomiya, T., Arai, M., Tejima, K., Nagashima, K., Maekawa, H., Yahagi, N., Yatomi, Y., Sakurada, S., Takuwa, Y., Ogata, I., Kimura, S., & Fujiwara, K., Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. Gastroenterology, 124, pp. 459–469, 2003. doi:10.1053/gast.2003.50049

[60] Sakamoto, T., Liu, Z., Murase, N., Ezure, T., Yokomuro, S., Poli, V. & Demetris, A.J., Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology, 29, pp. 403–411, 1999. doi:10.1002/hep.510290244

[61] Sandgren, E.P., Palmiter, R.D., Heckel, J.L., Daugherty, C.C., Brinster, R.L. & Degen, J.L., Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell, 66, pp. 245–256, 1991. doi:10.1016/0092-8674(91)90615-6

[62] Rhim, J.A., Sandgren, E.P., Palmiter, R.D. & Brinster, R.L., Complete reconstitution of mouse liver with xenogeneic hepatocytes. Proceedings of the National Academy of Sciences USA, 92, pp. 4942–4946, 1995. doi:10.1073/pnas.92.11.4942

[63] Tateno, C., Yoshizane, Y., Saito, N., Kataoka, M., Utoh, R., Yamasaki, C., Tachibana, A., Soeno, Y., Asahina, K., Hino, H., Asahara, T., Yokoi, T., Furukawa, T. & Yoshizato, K., Near completely humanized liver in mice shows human-type metabolic responses to drugs. American Journal of Pathology, 165, pp. 901–912, 2004.

[64] Emoto, K., Tateno, C., Hino, H., Amano, H., Imaoka, Y., Asahina, K., Asahara, T. & Yoshizato, K., Efficient in vivo xenogeneic retroviral vector-mediated gene transduction into human hepatocytes. Human Gene Therapy, 16, pp. 1138–1174, 2005. doi:10.1089/hum.2005.16.1168