Flow Patterns in Helical-Type Graft: Biomedical Applications

Flow Patterns in Helical-Type Graft: Biomedical Applications

E.S. Bernad S.I. Bernad A.F. Totorean A.I. Bosioc I. Sargan 

University of Medicine and Pharmacy ‘Victor Babes’ Timisoara, University Clinic ‘Bega’, Romania

Romanian Academy – Timisoara Branch, Centre for Fundamental and Advanced Technical Research, Romania

Department of MMUT, University Politehnica Timisoara, Romania

Page: 
30-43
|
DOI: 
https://doi.org/10.2495/DNE-V12-N1-30-43
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
1 January 2017
| Citation

OPEN ACCESS

Abstract: 

The long-term success of arterial bypass surgery is often limited by the progression of intimal hyperplasia at the anastomosis between the graft and the native artery. The experimental models were manufactured from glass tubing with a constant internal diameter of 8 mm, fashioned into a straight configuration and helical configuration. The aim of this study was to determine the three-dimensional flow structures in the proximal anastomosis under pulsatile flow conditions and to establish the significant differences between the straight and helical graft. In the anastomosis domain, a stable region of recirculation is observed near the occluded end of the artery, which forces the flow to move into the perfused host coronary artery. A comparison between experimentally measured velocity patterns in straight and helical grafts confirms the robust nature of the secondary flows in the helical geometry. The helical configuration promotes the mixing effect of vortex motion such that the particles are mixed into the blood stream in the junction area.

Keywords: 

bypass graft, helical graft, particle mixing, secondary flow

  References

[1] Sottiurai, V.S., Yao, J.S.T., Flinn, W.R. & Baston, R.C., Intimal hyperplasia and neointima: an ultrastructural analysis ofthrombosed grafts in humans. Surgery, 93, pp. 809–817, 1983.

[2] Ballyk, P.D., Walsh, C., Butany, J. & Ojha, M., Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech., 31, pp. 229–237, 1998. http://dx.doi.org/10.1016/S0197-3975(97)00111-5

[3] Henry, F.S., Collins, M.W., Hughes, P.E. & How, T.V., Numerical investigation of steady flow in proximal and distal end-to-side anastomoses. J. Biomech. Eng., 118, pp. 302–310, 1996. http://dx.doi.org/10.1115/1.2796011

[4] Kute, S.M. & Vorp, D.A., The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. J. Biomech. Eng., 123, pp. 277–283, 2001. http://dx.doi.org/10.1115/1.1374203

[5] Loth, F., Jones, S.A., Zarins, C.K., Giddens, D.P., Nassar, R.F., Glagov, S. & Bassiouny, H.S., Relative contribution of wall shear stress and injury in experimental intimal thickening at eP.T.FE end-to-side arterial anastomoses. J. Biomech. Eng., 124, pp. 44–51, 2002. http://dx.doi.org/10.1115/1.1428554

[6] Hofer, M., Rappitsch, G., Perktold, K., Trubel, W. & Schima, H., Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech., 29(10), pp. 1297–1308, 1996. http://dx.doi.org/10.1016/0021-9290(96)00036-X

[7] Fatemi, R.S. & Rittgers, S.E., Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions. J. Biomech. Eng., 116, pp. 361–367, 1994. http://dx.doi.org/10.1115/1.2895743

[8] Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W. & Schima, H., Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech., 35, pp. 225–236, 2002. http://dx.doi.org/10.1016/S0021-9290(01)00194-4

[9] Quarteroni, A., Tuveri, M. & Veneziani, A., Computational vascular dynamics: problems, models and methods. Comput. Visual. Sci., 2, pp. 163–197, 2002. http://dx.doi.org/10.1007/s007910050039

[10] Krueger, U., Zanow, J. & Scholz, H., Computational fluid dynamics and vascular access. Artif. Organs, 26, pp. 571–575, 2002. http://dx.doi.org/10.1046/j.1525-1594.2002.07078.x

[11] Verdonck, P., The role of computational fluid dynamics for artificial organ design. Artif. Organs, 26, pp. 569–570, 2002. http://dx.doi.org/10.1046/j.1525-1594.2002.00920.x

[12] Bernad, E.S., Craina, M. & Bernad, S.I., Blood flow simulation in patient-specific coronary bypass grafts, Proc. of the Data Management and Security, WIT Transaction on Information and Communication Technologies, eds. A. Rabasa, C.A. Brebbia & A. Bia, WIT Press: Soauthampton, Boston, pp. 187–196, 2013.

[13] Loth, F., Fischer, P.F. & Bassiouny, H.S., Blood flow in end-to-side anastomoses. Annu. Rev. Fluid Mech, 40, pp. 367–393, 2008. http://dx.doi.org/10.1146/annurev.fluid.40.111406.102119

[14] Canneyt, K.V., Morbiducci, U., Eloot, S., de Sanstis, G. & Verdock, P., A computational exploration of helical arterio-venous graft designs. J. Biomech., 46, pp. 345–353, 2013. http://dx.doi.org/10.1016/j.jbiomech.2012.10.027

[15] Bernad, S.I., Bosioc, A., Bernad, E.S. & Craina, M.L., Comparison between experimentally measured flow patterns for straight and helical graft. Bio-Medical Materials and Engineering, 24, pp. 853–860, 2014.

[16] Caro, C.G., Nick, J.C. & Nick, W., Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J. R. Soc. Interface, 2, pp. 261–266, 2005. http://dx.doi.org/10.1098/rsif.2005.0044

[17] Morbiducci, U., Ponzini, R., Grigionid M. & Redael, A., Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech., 40, pp. 519–534, 2007. http://dx.doi.org/10.1016/j.jbiomech.2006.02.017

[18] Zheng, T.H., Fan, Y.B., Xiong, Y., Jiang, W.T. & Deng, X.Y., Hemodynamic performance study on small diameter helical grafts. ASAIO J., 55\3, pp. 192–199, 2009.

[19] Zheng, T., Wang, W., Jiang, W., Deng, X. & Fan, Y., Assessing hemodynamic performances of small diameter helical grafts: transient simulation. Journal of Mechanics in Medicine and Biology, 12\1, 1250008, 2012.

[20] Coppola, G. & Caro, C., Oxygen mass transfer in a model three-dimensional artery. J. R. Soc. Interface, 5, pp. 1067–1075, 2008. http://dx.doi.org/10.1098/rsif.2007.1338

[21] Cookson, A.N., Doorly, D.J. & Sherwin, S.J., Mixing through stirring of steady flow in small amplitude helical tubes. Ann. Biomed. Eng., 37, pp. 710–721, 2009. http://dx.doi.org/10.1007/s10439-009-9636-y

[22] Chen, Z., Fan, Y.B., Deng, X.Y. & Xu, Z., Swirling flow can suppress flow disturbances in endovascular stents: a numerical study. ASAIO J., 55, pp. 543–549, 2009. http://dx.doi.org/10.1097/MAT.0b013e3181b78e46

[23] Zhan, F., Fan, Y.B. & Deng, X.Y., Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts. Thromb. Res., 125, pp. 413–418, 2010. http://dx.doi.org/10.1016/j.thromres.2009.02.011

[24] FLUENT 6.3 User’s Guide, Ansys Fluent Incorporated, 2006.

[25] Caro, C.G., Doorly, D.J., Tarnawski, M., Scott, K.T., Long, Q. & Dumoulin, C.L., Nonplanar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc., A, 452, pp. 185–197, 1996. http://dx.doi.org/10.1098/rspa.1996.0011

[26] Caro, C.G., Watkins, N., Doorly, D.J., Sherwin, S.J. & Peiro, J., Influence of non-planar geometry on flow separation. J. Physiol., 513, pp. 2–2, 1998.

[27] Sherwin, S.J., Shah, O., Doorly, D.J., McLean, M., Watkins, N., Caro, C.G., Peiro, J., Tarnawski, M. & Dumoulin, C.L., Visualisation and computational study of flow at model planar and non-planar end-to-side arterial bypass grafts. J. Physiol., 504, pp. 44–44, 1997.