Factors Influencing the Retreat of the Coastline

Factors Influencing the Retreat of the Coastline

M. López J.I. Pagán I. López L. Aragonés A.J. Tenza-Abril J. GarcÍa-Barba

Department of Civil Engineering. University of Alicante, Spain

Page: 
741-749
|
DOI: 
https://doi.org/10.2495/CMEM-V5-N5-741-749
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

One of the main problems of coastlines around the world is their erosion. There are many studies that have tried to link coastal erosion with different parameters such as: maritime climate, sediment transport, sea level rise etc. However, it is unclear to what extent these factors influence coastal erosion. For example, the Intergovernmental Panel on Climate Change (IPCC) has predicted an increase in sea level at a much faster rate than that experienced in the first part of this century, reaching 1 m of elevation in some areas. Another factor to consider is the lack of sediment supply, since currently the contribution of new sediments from rivers or ravines is interrupted by anthropic activities carried out in their basins (dams, channelling, etc.). The big storms, increasingly frequent due to climate change, also should be considered, since they produce an off-shore sediments transport, so that these cross the depth of clo- sure, causing nonreturn of the sediment to the beach. Also, the sediment undergoes a process of wear due to various reasons such as the dissolution of the carbonate fraction and/or breakage and separation of the components of the particles. All these elements, to a greater or lesser extent, lead to the retreat of the coastline. Therefore, the aim of this study is to analyse the different factors causing the retreat of the coastline, in order to determine the degree of involvement of each of them and, therefore, be able to pose different proposals to reduce the consequences of coastal erosion.

Keywords: 

coastline retreat, erosion, sand

  References

[1] Bird, E., Coastal Geomorphology: An Introduction, John Wiley & Sons, 2011.

[2] Bardají Azcárate, T., Zazo Cardeña, C., Dabrio, C.J., Goy Goy, J.L., Lario Gómez, J. & Silva Barroso, P.G., Impacto del cambio climático en el litoral. Enseñanza de las Ciencias de la Tierra, 17(2), pp. 141–154, 2009.

[3] Hughes, L., Climate change, in Ten Commitments Revisited: Securing Australia’s Future Environment, D. Lindenmayer, S. Morton, and S. Dovers, (eds). CSIRO Publishing: Collingwood, Melbourne, Australia, pp. 217–225, 2014.

[4] Steffen, W., Climate change. In Ten Commitments Revisited: Securing Australia’s Future Environment, eds D. Lindenmayer, S. Morton & S. Dovers, CSIRO Publishing: Collingwood, Melbourne, Australia, pp. 277–235, 2014.

[5] Khatiwala, S., Primeau, F. & Hall, T., Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462(7271), pp. 346–349, 2009. https://doi.org/10.1038/nature08526

[6] Feely, R.A., Sabine, C.L., Lee, K., Millero, F.J., Lamb, M.F., Greeley, D., Bullister, J.L., Key, R.M., Peng, T.H., Kozyr, A. & Ono, T., In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4), 2002. https://doi.org/10.1029/2002GB001866

[7] Morse, J.W., Arvidson, R.S. & Lüttge, A., Calcium carbonate formation and dissolution. Chemical Reviews, 107(2), pp. 342–381, 2007. https://doi.org/10.1021/cr050358j

[8] Pascual, J.E.P. & García, M.J.L., Evaluación de las técnicas de tratamiento digital de imágenes en el estudio de la evolución de las áreas costeras. In Ordenación del territorio y medio marino: V Reunión científica de la asociación española de teledetección, Universidad de Las Palmas de Gran Canaria - Servicio de Publicaciones: Las Palmas de Gran Canaria, pp. 877–892, 1993.

[9] Rosselló, V. & Sanjaume, E., Evolution and man‘s impact on the Pals Valencia coast. In Symposium on man’s impact on coastal environment. NE Spanish Mediterranean Coast, lGU Comission on the Coastal Environment: Barcelona, Spain, pp. 87–106, 1986.

[10] Sanjaume, E., Las costas valencianas. Sedimentología y morfología, ed. S. Geografia, U.d. Valencia, Spain, p. 505, 1985.

[11] Pilkey, O.H. & Thieler, E.R., Coastal erosion. Department of Geology, Duke University, North Carolina, SEPM slide set 6, p. 24, 1992.

[12] Marbá, N., Duarte, C.M., Cebrián, J., Gallegos, M.E., Olesen, B. & Sand-Jensen, K., Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Marine Ecology Progress Series, 137(1), pp. 203–213, 1996. https://doi.org/10.3354/meps137203

[13] Aragonés, L., Pagán, J.I., López, M.P. & García-Barba, J., The impacts of Segura River (Spain) channelization on the coastal seabed. Science of the Total Environment, 543, Part A, pp. 493–504, 2016.

[14] Isla, F.I., Bértola, G.R., Farenga M.O., Serra, S.B. & Cortizo, L.C., Villa Gesell: un desequilibrio sedimentario inducido por fijaciones de médanos. Revista de la Asociación Argentina de Sedimentología, 5, pp. 41–51, 1998.

[15] Juárez, V. & Isla, F., Evolución histórica del núcleo urbano de Villa Gesell. Revista Geográfica, 125, pp. 49–60, 1999.

[16] Marcomini, S.C. & López, R.A., Influencia de la urbanización en la dinámica costera, Villa Gesell, provincia de Buenos Aires, República Argentina. Revista de la Asociación Argentina de Sedimentología, 4(2), pp. 79–96, 1997.

[17] López, I., López, M., Aragonés, L., García-Barba, J., López, M.P. & Sánchez, I., The erosion of the beaches on the coast of Alicante: Study of the mechanisms of weathering by accelerated laboratory tests. Science of the Total Environment, 566, pp. 191–204, 2016. https://doi.org/10.1016/j.scitotenv.2016.05.026

[18] Schnack, E., Álvarez, J. & Cionchi, J., El carácter erosivo de la línea de costa entre Mar Chiquita y Miramar, provincia de Buenos Aires. Actas del Simposio Oscilaciones del Nivel del Mar Durante el Último Hemiciclo Deglacial en la Argentina, pp. 118–130, 1983.

[19] Riggs, S.R., Cleary, W.J. & Snyder, S.W., Influence of inherited geologic framework on barrier shoreface morphology and dynamics. Marine Geology, 126(1–4), pp. 213–234, 1995. https://doi.org/10.1016/0025-3227(95)00079-E

[20] Inman, D.L., Nordstrom, C.E. & Flick, R.E., Currents in submarine canyons: an air-sea-land interaction. Annual Review of Fluid Mechanics, 8(1), pp. 275–310, 1976. https://doi.org/10.1146/annurev.fl.08.010176.001423

[21] Nemoto, K., Izu, S., Hijikata, S., Fujii, S., Nanba, J. & Takino, Y., Hagoromo submarine canyon—geological interpretation of mass movement. Journal of the School of Marine Science and Technology, 29, pp. 1–21, 1989.

[22] Tanaka, S., Yamamoto, K., Ito, H., Arisawa, T. & Takagi, T., Field investigation on sediment transport into the submarine canyon in the Fuji coast with the new type tracers. Coastal Engineering Proceedings, 1(26), 1998.

[23] Paull, C.K., Mitts, P., Ussler, W., Keaten, R. & Greene, H.G., Trail of sand in upper Monterey Canyon: offshore California. Geological Society of America Bulletin, 117(9–10), pp. 1134–1145, 2005. https://doi.org/10.1130/B25390.1

[24] Smith, D.P., Kvitek, R., Iampietro, P.J. & Wong, K., Twenty-nine months of geomorphic change in upper Monterey Canyon (2002–2005). Marine Geology, 236(1), pp. 79–94, 2007. https://doi.org/10.1016/j.margeo.2006.09.024

[25] López, I., Aragonés, L., Villacampa, Y., Compañ, P. & Satorre, R., Morphological classification of microtidal sand and gravel beaches. Ocean Engineering, 109, pp. 309–319, 2015. https://doi.org/10.1016/j.oceaneng.2015.09.021

[26] López, I., Aragonés, L. & Villacampa, Y., nalysis and modelling of cross-shore profile of gravel beaches in the province of Alicante. Ocean Engineering, 118, pp. 173–186, 2016. https://doi.org/10.1016/j.oceaneng.2016.04.008

[27] Pagán, J.I., Aragonés, L., Tenza-Abril, A.J. & Pallarés, P., The influence of anthropic actions on the evolution of an urban beach: Case study of Marineta Cassiana beach, Spain. Science of the Total Environment, 559, pp. 242–255, 2016. https://doi.org/10.1016/j.scitotenv.2016.03.134

[28] Comisión-Interministerial-de-Estrategias-Marinas, Directrices para la caracterización del material dragado y su reubicación en aguas del dominio público marítimo-terrestre, Ministerio de Agricultura, Alimentación y Medioambiente, Puertos del Estado, Centro de Estudios de Puertos y Costas, Instituto Español de Oceanografía: Spain, 2015.

[29] Aragonés, L., García-Barba, J., García-Bleda, E., López, I. & Serra, J., Beach nourishment impact on Posidonia oceanica: Case study of Poniente Beach (Benidorm, Spain). Ocean Engineering, 107, pp. 1–12, 2015. https://doi.org/10.1016/j.oceaneng.2015.07.005

[30] Mohanty, P.K., Patra, S.K., Bramha, S., Seth, B., Pradhan, U., Behera, B., Mishra, P. & Panda, U.S., Impact of groins on beach morphology: a case study near Gopalpur Port, East Coast of India. Journal of Coastal Research, 28(1), pp. 132–142, 2012. https://doi.org/10.2112/JCOASTRES-D-10-00045.1

[31] Bértola, G.R., Merlotto, A., Cortizo, L. & Isla, F.I., Playas de bolsillo en Mar Chiquita, provincia de Buenos Aires. Revista de la Asociación Argentina de Sedimentología, 70(2), pp. 267–278, 2013.

[32] Beiser, V., The deadly global war for sand. Wired website retrieved 26th March, 2015.

[33] Edwards, B., La demanda insaciable de arena: parece abundar, pero la materia prima del vidrio y el hormigón no llega a cubrir la demanda. Finanzas y desarrollo: publicación trimestral del Fondo Monetario Internacional y del Banco Mundial, 52(4), pp. 46–47, 2015.

[34] Flor, G., Ortea, J. & Rodríguez, M., El componente bioclástico carbonatado en la sedimentación arenosa del estuario de Villaviciosa (Asturias, NO de España). Trabajos de Geología, 20(20), pp. 129–157, 1998.

[35] De Falco, G., Molinaroli, E., Baroli, M. & Bellacicco, S., Grain size and compositional trends of sediments from posidonia oceanica meadows to beach shore, Sardinia, western Mediterranean. Estuarine, Coastal and Shelf Science, 58(2), pp. 299–309, 2003. https://doi.org/10.1016/S0272-7714(03)00082-9

[36] Demarest, J.M. & Kraft, J.C., Stratigraphic record of quaternary sea levels: implication for more ancient strata. Sea-level Changes and Coastal Evolution: SEPM, Special Publication, 41, pp. 223–239, 1987.

[37] Hallermeier, R.J., A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering, 4, pp. 253–277, 1980. https://doi.org/10.1016/0378-3839(80)90022-8

[38] Hallermeier, R.J., Uses for a calculated limit depth to beach erosion. In 16th Coastal Engineering Conference;American Society of Civil Engineers: Reston, VA, pp. 1493–1512, 1978. https://doi.org/10.1061/9780872621909.090

[39] Stauble, D. & Cialone, M., Sediment dynamics and profile interactions: DUCK94. In Coastal Engineering 1996, pp. 3921–3934, 1997. https://doi.org/10.1061/9780784402429.303

[40] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds C.W. Team, R.K. Pachauri & L.A. Meyer, Geneva, Switzerland: IPCC, Intergovernmental Panel on Climate Change, p. 151, 2014.

[41] Kellett, J., Balston, J. & Western, M., Sea-level rise and planning: retrospect and prospect. Australian Planner, 51(3), pp. 203–211, 2014. https://doi.org/10.1080/07293682.2013.808681

[42] Hofmann, M. & Schellnhuber, H.J., Ocean acidification: a millennial challenge. Energy & Environmental Science, 3(12), pp. 1883–1896, 2010. https://doi.org/10.1039/c000820f

[43] Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.H., Kozyr, A., Ono, T. & Rios, A.F., The oceanic sink for anthropogenic CO2. Science, 305(5682), pp. 367–371, 2004. https://doi.org/10.1126/science.1097403

[44] Caldeira, K. & Wickett, M.E., Oceanography: anthropogenic carbon and ocean pH. Nature, 425(6956), pp. 365–365, 2003. https://doi.org/10.1038/425365a

[45] Andersson, A.J. & Mackenzie, F.T., Shallow-water oceans: a source or sink of atmospheric CO2? Frontiers in Ecology and the Environment, 2(7), pp. 348–353, 2004. https://doi.org/10.1890/1540-9295(2004)002[0348:soasos]2.0.co;2

[46] Millero, F., Huang, F., Graham, T. & Pierrot, D., The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochimica et Cosmochimica Acta, 71(1), pp. 46–55, 2007. https://doi.org/10.1016/j.gca.2006.08.041

[47] Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L. & Robbins, L.L., Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a Workshop Held, 18, p. 20, 2005.

[48] Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F. & Key, R.M., Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), pp. 681–686, 2005. https://doi.org/10.1038/nature04095

[49] Andersson, A.J., Mackenzie, F.T. & Ver, L.M., Solution of shallow-water carbonates: An insignificant buffer against rising atmospheric CO2. Geology, 31(6), pp. 513–516, 2003. https://doi.org/10.1130/0091-7613(2003)031<0513:SOSCAI>2.0.CO;2

[50] Duarte, C.M., Seagrass depth limits. Aquatic Botany, 40(4), pp. 363–377, 1991. https://doi.org/10.1016/0304-3770(91)90081-F

[51] EU, European seagrasses: an introduction to monitoring and management. M&MS project, pp. 95, 2004.

[52] Koch, E.W., Sanford, L.P., Chen, S.N., Shafer, D.J. & Smith, J.M., Waves in seagrass systems: review and technical recommendations, DTIC Document, 2006.

[53] Church, J.A., White, N.J., Aarup, T., Wilson, W.S., Woodworth, W.S., Domingues, C.M., Hunter, J.R. & Lambeck, K., Understanding global sea levels: past, present and future. Sustainability Science, 3(1), pp. 9–22, 2008. https://doi.org/10.1007/s11625-008-0042-4