Classification of Geometry for Deployable Structures Used for Innovation: Design of New Surfaces with Scissor 2 Bar, and Form Generation Method of Relative Ratios

Classification of Geometry for Deployable Structures Used for Innovation: Design of New Surfaces with Scissor 2 Bar, and Form Generation Method of Relative Ratios

Esther Rivas-Adrover

Department of Architecture, University of Cambridge, Britain

Page: 
464-474
|
DOI: 
https://doi.org/10.2495/CMEM-V5-N4-464-474
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Deployable structures can expand and/or contract due to their geometrical, material and mechanical properties. This research proposes a classification of geometry for deployable structures. This classification system applied to structures made with scissor 2 bar can lead to architectural innovation. This is demonstrated in the case study of a new design for surfaces based on scissors 2 bar. Through this case study a form generation method of relative ratios is formulated that can be applied to infinite geometrical arrangements.

This geometry classification is an attempt to seek further understanding of the subject of deployable structures. In order to gain a comprehensive understanding of this field, different ways of ordering information are being considered.

Keywords: 

2 bar, classification, database, deployable, design, geometry, innovation, scissor, surface

  References

[1] Escrig, F., General survey of deployability in architecture. Proceeding of the 2nd Inter-national Conference on Mobile and Rapidly Assembled Structures, eds. F. Escrig & C. A. Brebbia, Computational Mechanics Publications: Southampton, pp. 3–20, 1996.

[2] Hanaor, A. & Levy, R., Evaluation of deployable structures for space enclosures. Inter-national Journal of Space Structures, 16(4), pp. 211–229, 2001. http://dx.doi.org/10.1260/026635101760832172

[3] Rivas Adrover, E., Deployable Structures, Laurence King Publishing: London, pp. 15–143, 2015.

[4] Escrig, F., Valcárcel, J.P. & Sánchez, J., Deployable cover on a swimming pool in seville. Journal of the International Association for Shell and Spatial Structures, 37(120), pp. 39–70, 1996.

[5] McLean, W. & Silver, P., Air Structures, Laurence King Publishing: London, pp. 40–41, 2015.

[6] You, Z. & Pellegrino, S., Cable-stiffened pantographic deployable structures Part 2: mesh reflector. AIAA Journal, 35(8), 1348–1355, 1997. http://dx.doi.org/10.2514/2.243

[7] Escrig, F., Geometría de las Estructuras Desplegables de Aspas (Chapter 4). Arquitec-tura Transformable, eds. Candela, F., Pérez Piñero, E., Clatrava S., Escrig, F. & Valcár-cel, J.P., Escuela Técnica Superior de Arquitectura: Sevilla, pp. 97–124, 1993.

[8] Jensen, F. & Pellegrino, S., Expandable “BLOB” structures. Journal of the Interna-tional Association for Shell and Spatial Structures, 46(3), pp. 151–158, 2005.

[9] Sánchez-Cuenca, L., Geometric models for expandable structures. Proceeding of the 2nd International Conference on Mobile and Rapidly Assembled Structures, eds. F. Escrig & C.A. Brebbia, Computational Mechanics Publications: Southampton, pp. 93–102, 1996.

[10] Baker, H.S., Furniture in the Ancient World. Origins and Evolution. 3100 –475 B.C, The Connoisseur: London, p. 171, 1966.

[11] Escrig, F., Las Estructuras de Emilio Pérez Piñero (Chapter 2). Arquitectura Transform-able, eds. F. Candela, E. Pérez Piñero, S. Clatrava, F. Escrig & J.P. Valcárcel, Escuela Técnica Superior de Arquitectura: Sevilla, pp. 9–32, 1993.

[12] Escrig, F., Modular, Ligero, Transformable. Un paseo por la arquitectura ligera móvil, Universidad de Sevilla, 2012.

[13] Ashby, M. & Johnson, K., Materials and Design. The Art and Science of Material Se-lection in Product Design, Butterworth Heinemann: Oxford, 2002.

[14] De Temmerman, N., Design and Analysis of Deployable Bar Structures for Mobile Ar-chitectural Applications, Vrije Universiteit Brussel: Brussels, p. 76, 2007.