Magneto-Plasmadynamic Thruster Modelling with Coaxial Induced Magnetic Field

Magneto-Plasmadynamic Thruster Modelling with Coaxial Induced Magnetic Field

C. Chelem R. Groll

Center of Applied Space Technology and Microgravity, University of Bremen, Germany

Department of Physics, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon

Page: 
380-392
|
DOI: 
https://doi.org/10.2495/CMEM-V4-N4-380-392
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The magnetoplasmadynamic (MPD) arcjet is a promising thruster which is developed for exploration missions to the moon and Mars, and for raising orbits of large space structures. The MPD arcjet utilizes mainly electromagnetic force, i.e Lorentz force × B, which is generated in this work by interaction between the current density and a coaxial magnetic field azimuthally induced by the total discharge current. In the present notes, we describe the implementation of a density–pressure-based method for the simulation of the magnetohydrodynamic (MHD) equations under a finite volume formulation. This new algorithm was developed for both ideal and resistive MHD equations and make use of the central-upwind schemes of Kurganov and Tadmor for flux calculation. As we assume that the plasma flow is a continuum fluid, electrical conductivity is predicted according to the Spitzer-Harm formulation. With the developed model, a limited set of computer runs was performed to assess the effect of geometric scale changes on an Argon self-field MPD thrusters performance. The results are reported and discussed.

Keywords: 

central-upwind schemes, compressible flow, electrical conductivity, lorentz force, magnetohydrodynamic, magnetoplasmadynamics

  References

[1] Sankaran, K. (2005). Simulation of MPD Flows Using A Flux-Limited Numerical Method for the MHD Equations. Ph.D. thesis, Princeton University, Technology and Medicine, Princeton

[2] Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M. Hyperbolic divergence cleaning for the MHD equations (2002). Journal of Computational Physics, 175 (2), pp. 645-673.  doi: 10.1006/jcph.2001.6961

[3] Xisto, C.M., Páscoa, J.C., Oliveira, P.J. A pressure-based high resolution numerical method for resistive MHD (2014). Journal of Computational Physics, 275, pp. 323-345.  doi: 10.1016/j.jcp.2014.07.009

[4] Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows  (2010) International Journal for Numerical Methods in Fluids, 63 (1), pp. 1-21.  doi: 10.1002/fld.2069

[5] (2014). OpenFOAM. Online; accessed 05 July 2016.

[6] Kurganov, A., Tadmor, E. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations (2000). Journal of Computational Physics, 160 (1), pp. 241-282. doi: 10.1006/jcph.2000.6459

[7] Kurganov, A., Noelle, S., Petrova, G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations (2002). SIAM Journal of Scientific Computing, 23 (3), pp. 707-740. doi: 10.1137/S1064827500373413

[8] Bittencourt, J. (2004). Fundamentals of Plasma Physics. Springer: New York http://dx.doi.org/10.1007/978-1-4757-4030-1

[9] Sod, G.A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws (1978). Journal of Computational Physics, 27 (1), pp. 1-31. doi: 10.1016/0021-9991(78)90023-2

[10] Brio, M., Wu, C.C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics (1988). Journal of Computational Physics, 75 (2), pp. 400-422. doi: 10.1016/0021-9991(88)90120-9