DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law

DFT and X-Ray Study of Structural, Electronic, Elastic and Optical Properties in BE1–XZNXS Alloys Depending on Vegard’S Law

A. Gultekin P. Pashaei Z. Khan M.K. Ozturk M. Tamer Y. Bas

Gazi University Photonic Application and Research Centre, Turkey

Physics Department, Science Faculty, Gazi University, Turkey.

Fculty of Science & Technology, Bournemouth University, UK

Zirve University, Turkey

National Boron Research Institute, Turkey

Page: 
340-349
|
DOI: 
https://doi.org/10.2495/CMEM-V3-N4-340-349
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Structural, optical and electronic properties and elastic constants of Be1–xZnxS alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

Keywords: 

BeZnS, Castep, DFT, Vegard

  References

[1] Gunshor, R. & Nurmikko, A., Mater. Res. Bull., 20, p. 15, 1995.

[2] Verie, C., J. Cryst. Growth, 1061, pp. 184–185, 1998.

[3] Maruyama, K., Suto, K. & Nishizawa, J.-I., J. Cryst. Growth, 104, pp. 214–215, 2000.

[4] Wang, H.Y., Cao, J., Huang, X.Y. & Huang, J.M., Condens Matter Physics, 15(1), 13705, pp. 1–10, 2012.

[5] Kuskovsky, I.L., Gu, Y., Van der Voort, M., Tian, C., Kim, B., Herman, I.P., Neumark, G.F.,Guo, S.P., Maksimov, O. &Tamargo, M.C., Phys. Stat. Sol. (b), 229(1), p. 239, 2002. doi: http://dx.doi.org/10.1002/1521-3951(200201)229:1%3C239::AID-PSSB239%3E3.0.CO;2-G

[6] Kuskovsky, I., Tian, C., Sudbrack, C., Neumark, G.F., Guo, S.P. & Tamargo, M.C., J. Cryst. Growth, 214, pp. 335–339, 2000. doi: http://dx.doi.org/10.1016/S0022-0248(00)00108-1

[7] Buchley, M.R., Peiris, F.C., Maksimov, O., Muňoz, M. & Tamargo, M.C., Appl. Phys. Lett., 81, p. 5156, 2002. doi: http://dx.doi.org/10.1063/1.1534387

[8] Faurie, J.P., Bousquet, V., Brunet, P. & Tournie, E., J. Cryst. Growth, 184, p. 11, 1998. doi: http://dx.doi.org/10.1016/S0022-0248(98)80284-4

[9] Baaziz, H., Charifi, Z., El Haj Hassan, F., Hashemifar, S.J. & Akbarzadeh, H., Phys. Stat. Sol. (b), 243(6), p. 1296, 2006. doi: http://dx.doi.org/10.1002/pssb.200541481

[10] Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. & Payne, M.C., J. Phys. Condens. Matter, 14(11), p. 2717, 2002. doi: http://dx.doi.org/10.1088/0953-8984/14/11/301

[11] Fischer, T.H. & Almlöf, J., J. Phys. Chem., 96, p. 9768, 1992. doi: http://dx.doi.org/10.1021/j100203a036

[12] Monkhorst, H.J. & Pack, J.D., Phys. Rev. B, 13(12), p. 5188, 1976.

[13] Androulidaki, M., Pelekanos, N.T., Tsagaraki, K., Dimakis, E. & Iliopoulos, E., b3(6), p. 1866, 2006.

[14] Wu, J., Walukiewicz, W., Yu, K.M., Ager, III J.W., Li, S.X., Haller, E.E., Hai, Lu. & Schaff, W.J., Solid State Commun., 127, p. 411, 2003. doi: http://dx.doi.org/10.1016/S0038-1098(03)00457-5

[15] Narayana, C., Nesamony, V.J. & Ruoff, A.L., Phys. Rev.. B, 56, p. 14338, 1997. doi: http://dx.doi.org/10.1103/PhysRevB.56.14338

[16] Okuyama, H., Kishita, Y. & Ishibashi, A., Phys. Rev. B., 57, p. 2257, 1998.

[17] Born, M. & Huang, K., Dynamical Theory of Crystal Lattices, Clarendon: Oxford, 1956.

[18] Zhai, H., Li, X. & Du, J., Mater. Trans., 53(7), p. 1247, 2012.

[19] Matori, K.A., Zaid, M.H.M., Sidek, H.A.A., Halimah, M.K., Wahab, Z.A. & Sabri, M.G.M., Int. J. Phys. Sci., 5(14), p. 2212, 2010.

[20] Ponomareva, A.V., Isaev, E.I., Vekilov, Yu.Kh. & Abrikosov, I.A., Phys. Rev. B, 85, p. 144117, 2012.

[21] Ameri, M., Rached, D., Rabah, M., El Haj Hassan, F., Khenata, R. & Doui-Aici, M., Phys. Stat. Sol. (b), 245(1), p. 106, 2008.

[22] Ashcroft, N.W. & Mermin, N.D., Solid State Physics, Saunders College: Philadelphia, PA, 1976.

[23] Nye, J.F., Physical Properties of Crystals, Clarendon: Oxford, 1957.

[24] Wu, Z.-J., Zhao, E.-J., Xiang, H.-P., Hao, X.-F., Liu, X.-J. & Meng, J., Phys. Rev. B, 76, p. 054115, 2007.

[25] Jing, C., Xiang-Rong, C.,Wei, Z. & Jun, Z., Chin. Phys. Soc., 17(4), p. 1674, 2008.

[26] Bannikov, V.V., Shein, I.R. & Ivanovskii, A.L., Phys. Status Solidi. Rapid Res. Lett., 3, p. 89, 2007.

[27] Frantsevich, I.N., Voronov, F.F. & Bokuta, S.A., Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, ed. I.N. Frantsevich, Naukova Dumka: Kiev, 1983.

[28] Shena, Y. & Zhou, Z., J. Appl. Phys., 103, p. 074113, 2008.

[29] Kleinman, L., Phys. Rev., 128(6), p. 2614, 1962.

[30] Firszt, F., Legowski, S., Meczyiska, H. & Szatkowski, J., Acta Phys. Pol. A, 88(4), 1995.

[31] Chrisman, J.R., Fundamentals of Solid State Physics, John Wiley: New York, pp. 217–218, 1988.

[32] Johnston, I., Keeler, G., Rollins, R. & Spicklemire, S., Solid State Physics Simulations, The Consortium for Upper-Level Physics Software, John Wiley: New York, pp. 45–59, 1996.

[33] Fox, M., Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics, Oxford University Press: Oxford, 2001.

[34] Dadsetani, M. & Pourghazi, A., Phys. Rev. B, 73, p. 195102, 2006.

[35] Wooten, F., Optical Properties of Solids, Academic: New York, 1972.

[36] Herve, J.P.L. & Vandamme, L.K.J., Infrared Phys. Technol., 35, 609, 1994. doi: http://dx.doi.org/10.1016/1350-4495(94)90026-4

[37] Hosseini, S.M., Phys. B Condensed Matter, 403(10-11), p. 1907, 2008. doi: http://dx.doi.org/10.1016/j.physb.2007.10.370

[38] Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., & Rabah, M., Comput. Mater. Sci., 38(1), pp. 29–38, 2006. doi: http://dx.doi.org/10.1016/j.commatsci.2006.01.013