Performance Enhancement of a Valveless Pump Driven by a Noble Piezoelectric Composite Actuator

Performance Enhancement of a Valveless Pump Driven by a Noble Piezoelectric Composite Actuator

Y. Uetsuji T. Hiramori N. Nishiguchi H. Kuramae K. Tsuchiya

Department of Mechanical Engineering, Osaka Institute of Technology, Japan

Graduate School of Engineering, Osaka Institute of Technology, Japan

Department of Technology Management, Osaka Institute of Technology, Japan

Department of Precision Engineering, Tokai University, Japan

Page: 
392-402
|
DOI: 
https://doi.org/10.2495/CMEM-V2-N4-392-402
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper presents a computational and experimental study of a valveless pump driven by a noble piezoelectric composite actuator consisting of a bimorph piezoelectric plate and a metal cap. The superiority of deformation performance of the proposed composite actuator was demonstrated computationally through finite element simulation and was then verified experimentally by deflection measurements of a disc-shaped prototype under an alternating electric field. The proposed composite actuator was applied to a valveless pump in a Y-shaped fluid channel. The pump’s performance was estimated using a piezoelectric-fluid interaction finite element simulation. The effect of the fluid channel configuration was investigated, and the liquid feed volume is discussed and compared with that of conventional actuators.

Keywords: 

deflection measurement, finite element simulation, m-TAS, piezoelectric actuator, piezoelectric–fluid interaction, valveless pump

  References

[1] Gravesen, P., Brandebjerg, J. & Jensen, O.S., Microfl uidics – a review. Journal of Micromechanics and Microengineering, 4, pp. 168–182, 1993. doi: http://dx.doi.org/10.1088/0960-1317/3/4/002

[2] Laser, D.J. & Santiago, J.G., A review of micropumps. Journal of Micromechanics and Microengineering, 14, pp. R35–R64, 2004. doi: http://dx.doi.org/10.1088/0960-1317/14/6/r01

[3] Stemme, E. & Stemme, G., A valveless diffuser/nozzle-based fl uid pump. Sensors and Actuators A, 39, pp. 159–167, 1993. doi: http://dx.doi.org/10.1016/0924-4247(93)80213-z

[4] Koch, M., Evans, A.G.R. & Brunnschweiler, A., The dynamic micropump driven with a screen printed PZT actuator. Journal of Micromechanics and Microengineering, 8, pp. 119–122, 1998. doi: http://dx.doi.org/10.1088/0960-1317/8/2/019

[5] Li, S. & Chen, S., Analytical analysis of a circular PZT actuator for valveless micropumps. Sensors and Actuators A, 104, pp. 151–161, 2003. doi: http://dx.doi.org/10.1016/s0924-4247(03)00006-2

[6] Bu, M., Melvin, T., Ensell, G., Wilkinson, J.S. & Evans, A.G.R., Design and theoretical evaluation of a novel microfl uidic device to be used for PCR. Journal of Micromechanics and Microengineering, 13, pp. S125–S130, 2003. doi: http://dx.doi.org/10.1088/0960-1317/13/4/321

[7] Olsson, A., Stemme, G. & Stemme, E., A valve-less planar fl uid pump with two pump chambers. Sensors and Actuators A, 46–47, pp. 549–556, 1995. doi: http://dx.doi.org/10.1016/0924-4247(94)00960-p

[8] Olsson, A., Stemme, G. & Stemme, E., Diffuser-element design investigation for valve-less pumps. Sensors and Actuators A, 57, pp. 137–143, 1996. doi: http://dx.doi.org/10.1016/s0924-4247(97)80104-5

[9] Bardell, R., Sharma, N.R., Forester, F.K., Afromowitz, M.A. & Penney, R.J., Designing high-performance micro-pumps based on no-moving parts valves. Microelectromechanical Systems, 62, pp. 47–53, 1997.

[10] Ulhmann, A. & Fono, I., The piezoelectric valveless pump-improved dynamic model. Journal of Microelectromechanical Systems, 11, pp. 655–664, 2002. doi: http://dx.doi.org/10.1109/jmems.2002.805048

[11] Zhang, T. & Wang, Q.M., Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, pp. 463–473, 2006. doi: http://dx.doi.org/10.1109/tuffc.2006.1593386

[12] Olsson, A., Stemme, G. & Stemme, E., Numerical and experimental studies of fl atwalled diffuser elements for valveless micropump. Sensors and Actuators A, 84, pp. 165–175, 2000. doi: http://dx.doi.org/10.1016/s0924-4247(99)00320-9

[13] Gerlach, T., Schuenemann, M. & Wurmus, H., A new micropump principle of the reciprocationg type using pyramidic micro fl ow channels as passive valves. Numerical and experimental studies of fl at-walled diffuser elements for valveless micropump. Journal of Micromechanics and Microengineering, 5, pp. 199–201, 1995. doi: http://dx.doi.org/10.1088/0960-1317/5/2/039

[14] Ulhmann, A., The piezoelectric valveless pump-performance enhancement analysis. Sensors and Actuators A, 69, pp. 97–105, 1998. doi: http://dx.doi.org/10.1016/s0924-4247(98)00058-2

[15] Nguyen, N.-T. & Huang, X., Miniature valveless pumps based on printed circuit board technique. Sensors and Actuators A, 88, pp. 104–111, 2001. doi: http://dx.doi.org/10.1016/s0924-4247(00)00500-8

[16] Kojima, Y., Okusawa, T., Tsubouchi, K., Takagi, Y. & Hamano, N., Fundamental investigation of piezo-element-driven pump feeding a trace of liquid. Transactions of the Japan Society of Mechanical Engineers C, 58, pp. 3511–3516, 1992. doi: http://dx.doi.org/10.1299/kikaic.58.3511

[17] Morris, C.J. & Forster, F.K., Optimization of a circular piezoelectric bimorph for a micropump driver. Journal of Micromechanics and Microengineering, 10, pp. 459–465, 2000. doi: http://dx.doi.org/10.1088/0960-1317/10/3/323

[18] Kidera, M., Tsukamoto, H. & Miyazaki, K., A valve-less micro pump driven by a piezoelectric device. Turbomachinery, 31, pp. 435–439, 2003.

[19] Xu, Q.C., Yoshikawa, S., Belsick, J. & Newnham, R.E., Piezoelectric composites with high sensitivity and capacitance for use at high pressures. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 38, pp. 634–639, 1991. doi: http://dx.doi.org/10.1109/58.108862

[20] Sugawara, Y., Onitsuka, K., Yoshikawa, S., Xu, Q., Newnham, R.E. & Uchino, K., Metal-ceramic composite actuators. Journal of American Ceramic Society, 75, pp. 996–998, 1992. doi: http://dx.doi.org/10.1111/j.1151-2916.1992.tb04172.x

[21] Onitsuka, K., Dogan, A., Tressler, J.F., Xu, Q., Yoshikawa, S. & Newnham, R.E., Metalceramic composite transducer, the “Moonie”. Journal of Intelligent Material Systems and Structures, 6, pp. 447–455, 1995. doi: http://dx.doi.org/10.1177/1045389x9500600401

[22] MeyerJr, R.J., Dogan, A., Yoon, C., Pilgrim, S.M. & Newnham, R.E., Displacement amplifi cation of electroactive materials using the cymbal fl extensional transducer. Sensors and Actuators A: Physical, 87, pp. 157–162, 2001. doi: http://dx.doi.org/10.1016/s0924-4247(00)00489-1

[23] Nelli Silva, E.C., Nader, G., Shirahige, A.B. & Adamowski, J.C., Characterization of novel fl extensional actuators designed by using topology optimization method. Journal of Intelligent Material Systems and Structures, 14, pp. 297–308, 2003. doi: http://dx.doi.org/10.1177/1045389x03034683

[24] Uetsuji, Y., Kuramae, H. & Tsuchiya, K., Piezoelectric–fl uid interaction fi nite element analysis of a valve-less piezoelectric pump. WIT Transactions on Modelling and Simulation, 55, pp. 327–338, 2013. doi: http://dx.doi.org/10.2495/cmem130271

[25] Box, G.E.P. & Wilson, K.B., On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, B-13, pp. 1–45, 1951.