Matrix Influence on Determination of Organochlorine Pesticide Residues in Water by Solid Phase Extraction Coupled to Gas Chromatography-Mass Spectrometry

Matrix Influence on Determination of Organochlorine Pesticide Residues in Water by Solid Phase Extraction Coupled to Gas Chromatography-Mass Spectrometry

C. Rimayi D. Odusanya F. Mtunzi C. Van Wyk

Department of Water Affairs, Resource Quality Services (RQS), Roodeplaat, South Africa

Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa

Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa

Page: 
71-91
|
DOI: 
https://doi.org/10.2495/CMEM-V2-N1-71-91
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The presence of a sample matrix is one of the most important practical considerations in gas chromatography analysis as there are potentially numerous problems associated with matrix based injections. This paper aims to highlight the distinction between blank sample analysis and real sample analysis using automated solid phase extraction (SPE) and gas chromatography-mass spectrometry. Four reversed sorbent phases, including a Supelco LC-18, Strata C-18-E and Strata-X (styrene divinyl benzene) were used for SPE method development using an automated Gilson GX-271 AspecTM liquid handling instrument to determine the best solid phase and treatment for optimum organochlorine determination. The method developed proved to be valid when tested against parameters such as calibration range, coefficient of regression, linearity, repeatability and sensitivity. The StrataX and LC-18 cartridges produced the best recoveries, varying between 90% and 130% for most analytes. The LC-18 was selected for further analysis of the matrix effects as it showed greater reproducibility and method parameter robustness. Various real matrix sample volumes were tested on the selected LC-18 cartridge to determine its optimum maximum matrix load for efficient recoveries (breakthrough volume equivalent). A 100 ml sample volume was determined as the optimum matrix load volume as it produced more precise recoveries than other spiked sample matrix volumes. Visual comparison and analysis of selective ion monitoring chromatograms of both matrix based and matrix-free extracts indicate that there are significant matrix effects potentially capable of adversely affecting the chromatographic system from producing accurate identification and quantification of target analytes.

Keywords: 

gas chromatography-mass spectrometry, matrix effects, solid phase extraction

  References

[1] Hewavitharana, A.K., Matrix matching in liquid chromatography-mass spectrometry with stable isotope labelled internal standard- Is it necessary? Journal of Chromatography A, 1218, pp. 359–361, 2011. doi: http://dx.doi.org/10.1016/j.chroma.2010.11.047

[2] Kruve, A., Leito, I. & Herodes, K., Combating matrix effects in LC/ESI/MS: the extrapolative dilution approach. Analytica Chimica Acta, 651, pp. 75–80, 2009. doi: http://dx.doi.org/10.1016/j.aca.2009.07.060

[3] Souverain, S., Rudaz, S. & Veuthey, J-L., Matrix effect in LC-ESI-MS and LC-APCIMS with off-line and on-line extraction procedures. Journal of Chromatography A, 1058, pp. 61–64, 2004. doi: http://dx.doi.org/10.1016/j.chroma.2004.08.118

[4] Marin, J.M., Gracia-Lor, E., Sancho, J.V., Lopez, J.F. & Hernandez, F., Application of ultra-high-pressure liquid chromatography-tandem mass spectrometry to the determination of multi-class pesticides in environmental and wastewater samples. Study of matrix effects. Journal of Chromatography A, 1216, pp. 1410–1412, 2009. doi: http://dx.doi.org/10.1016/j.chroma.2008.12.094

[5] Hajslova, J. & Zrostlikova, J., Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. Journal of Chromatography A, 1000, pp. 181–189, 2003. doi: http://dx.doi.org/10.1016/S0021-9673(03)00539-9

[6] Hajslova, J., Holadova, K., Kocourek, V., Poustka, J., Godula, M., Cuhra, P. & Kempny, M., Matrix induced effects: a critical point in the gas chromatographic analysis of pesticide residues. Journal of Chromatography A, 800, pp. 283–286, 1997. doi: http://dx.doi.org/10.1016/S0021-9673(97)01145-X

[7] Kelly, T., Gray, T.R. & Huestis, M.A., Development and validation of a liquidchromatography-atmospheric pressure chemical ionisation-tandem mass spectrometry method for simultaneous analysis of 10 amphetamine-, metaphine- and 3,4-methylenedioxymethamphetamine-related (MDMA) analytes in human meconium. Journal of Chromatography B, 867, pp. 194–203, 2008. doi: http://dx.doi.org/10.1016/j.jchromb.2008.03.029

[8] Frenich, A.G., Martinez, J.L., Moreno, J.L.F. & Romero-Gonzales, R., Compensation for matrix effects in gas chromatography-tandem mass spectrometry using a single point standard addition. Journal of Chromatography A, 1216, pp. 4798–4802, 2009. doi: http://dx.doi.org/10.1016/j.chroma.2009.04.018

[9] Huck, C.W. & Bonn, G.K., Recent developments in polymer-based sorbents for solid-phase extraction. Journal of Chromatography A, 885, pp. 51–54, 2000. doi: http://dx.doi.org/10.1016/S0021-9673(00)00333-2

[10] Sanchez-Brunete, C., Albero, B., Martin, G. & Tadeo, J.L., Determination of pesticide residues by GC-MS using analyte protectants to counteract the matrix effect. Japan Society of Analytical Chemistry, 21, pp. 1291–1296, 2005.

[11] Soboleva, E., Ambrus, A. & Jarju, O., Estimation of uncertainty of analytical results based on multiple peaks. Journal of Chromatography A, 1029, pp. 161–166, 2003. doi: http://dx.doi.org/10.1016/j.chroma.2003.10.139

[12] Mastovska, K., Lehotay, S.J. & Anastassiades, M., Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrices. Analytical Chemistry, 77(24), pp. 8129–8134, 2005. doi: http://dx.doi.org/10.1021/ac0515576

[13] Benjitis, T., Dams, R., Lambert, W. & De Leender, A., Countering matrix effects in environmental liquid chromatography-electrospray ionisation tandem mass spectrometry water analysis for endocrine disrupting chemicals. Journal of Chromatography A, 1029, pp. 153–155, 2004. doi: http://dx.doi.org/10.1016/j.chroma.2003.12.022

[14] Chiu, M.L., Lawi, W., Snyder, S.T., Wong, P.K., Liao, J.C. & Gau, V., Matrix effects-a challenge toward automation of molecular analysis. Technology Review, 15(3), pp. 233–234, 2010.

[15] Chambers, E., Wagrowski-Diehl, D.M., Lu, Z. & Mazzeo, R., Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. Journal of Chromatography B, 852, pp. 22–24, 2007. doi: http://dx.doi.org/10.1016/j.jchromb.2006.12.030

[16] Rogatsky, E. & Stein, D., Evaluation of matrix effect and chromatography effi ciency: new parameters for validation of method development. Journal of American Mass Spectrometry, 16, pp. 1757–1759, 2005. doi: http://dx.doi.org/10.1016/j.jasms.2005.07.012

[17] Kruve, A., Kunnapas, A., Herodes, K. & Leito, I., Matrix effects in pesticide multiresidue analysis by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1187, pp. 58–65, 2008. doi: http://dx.doi.org/10.1016/j.chroma.2008.01.077

[18] Kloepfer, A., Quintana, J.B. & Thorsten, R., Operational options to reduce matrix effects in liquid chromatography-electrospray ionization-mass spectrometry analysis of aqueous environmental samples. Journal of Chromatography A, 1067, pp. 153–155, 2005. doi: http://dx.doi.org/10.1016/j.chroma.2004.11.101

[19] Marchi, I., Viette, V., Badoud, F., Fathi, M., Saugy, M., Rudaz, S. & Veuthey, J., Characterisation and classifi cation of matrix effects in biological samples analyses. Journal of Chromatography A, 1217, pp. 4071–4073, 2010. doi: http://dx.doi.org/10.1016/j.chroma.2009.08.061

[20] Bailey, R., Injectors for capillary gas chromatography and their application to environmental analysis. Journal of Environmental Monitoring, 7, pp. 1054–1057, 2005. doi: http://dx.doi.org/10.1039/b508334f

[21] Kicoyne, J. & Fux, E., Strategies for the elimination of matrix effects in the liquid chromatography tandem mass spectrometry analysis of the lipophillic toxic okadaic acid and azaspiracid-1 in molluscan shellfi sh. Journal of Chromatography A, 1217, pp. 7123–7130, 2010. doi: http://dx.doi.org/10.1016/j.chroma.2010.09.020

[22] Poole, C.F., Matrix induced response enhancement in pesticide residue analysis by gas chromatography. Journal of Chromatography A, 1158, pp. 241–249, 2007. doi: http://dx.doi.org/10.1016/j.chroma.2007.01.018

[23] Torres, M.E.H., Gonzalez, F.J.E., Cuadros-Rodreguez, L., Lopez, E.A. & Vidal, J.L.M., Assessment of matrix effects in gas chromatography electron capture pesticide-residue analysis. Chromatographia, 57, pp. 657–659, 2003. doi: http://dx.doi.org/10.1007/BF02491745

[24] Rossi, D.T. & Zhang, N., Automating solid-phase extraction: current aspects and future prospects. Journal of Chromatography A, 885, pp. 97–99, 2000. doi: http://dx.doi.org/10.1016/S0021-9673(99)00984-X

[25] Poole, C.F., Gunatilleka, A.D. & Sethuraman, R., Contributions of theory to method development in solid-phase extraction. Journal of Chromatography A, 885, pp. 17–20, 2000. doi: http://dx.doi.org/10.1016/S0021-9673(00)00224-7

[26] Nema, T., Chan, E.C.Y. & Ho, P.C., Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine. Talanta, 82, pp. 488–490, 2010. doi: http://dx.doi.org/10.1016/j.talanta.2010.04.063

[27] Gilson, Inc. Solid phase extraction solutions. USA, 2006. available at http://www.johnmorris.com.au/fi les/product/attachments/3429/239358_manual_instr.pdf

[28] Rimayi, C., Mtunzi, F., van Wyk, C. & Odusanya, D., Method development for the infl uence of matrix on selected organochlorine pesticide residue analysis in surface water by GC-MS, Water Pollution XII. WIT Transactions on Ecology and Environment, ISSN: 1746-448X, 2012.

[29] Soboleva, E., Rathor, N., Mageto, A. & Ambrus, A., Estimation of signifi cance of matrix induced chromatographic effects. FAO/IAEA Training and reference centre for food and pesticide control. FAO/IAEA Agricultural and Biotechnology Laboratory. Principles and Practices of Method Validation, pp. 138–140, 2000. ISBN: 978-1-84755-175-7.

[30] Lehtonen, T., Peuravuori, J. & Pihlaja, K., Characterisation of lake-aquatic humic matter isolated with two different sorbing solid techniques: tetramethylammonium hydroxide treatment and pyrolysis-gas chromatography/mass spectrometry. Analytica Chimica Acta, 424, pp. 91–103, 2000. doi: http://dx.doi.org/10.1016/S0003-2670(00)01141-7

[31] Choi, B.K., Hercules, D.M. & Gusev, A.I., LC-MS/MS Signal suppression effects in the analysis of pesticides in complex environmental samples. Fresenius Journal of Analytical Chemistry, 369, pp. 370–373, 2001. doi: http://dx.doi.org/10.1007/s002160000661

[32] Miege, C., Bados, P., Brosse, C. & Coquery, M., Method validation for the analysis of estrogens (including conjugated compounds) in aqueous matrices. Trends in Analytical Chemistry, 28(2), pp. 237–241, 2009. doi: http://dx.doi.org/10.1016/j.trac.2008.11.005

[33] Hayashi, Y., Matsuda, R., Haishima, Y., Yagami, T. & Nakamura, A., Validation of HPLC and GC-MS systems for bisphenol-A leached from hemodialyzers on the basis of FUMI theory. Journal of Pharmaceutical and Biomedical Analysis, 28, pp. 421–423, 2002. doi: http://dx.doi.org/10.1016/S0731-7085(01)00698-7

[34] Quintana, J., Marti I. & Ventura, F., Monitoring of pesticides in drinking and related waters in NE Spain with a multi residue SPE-GC-MS method including an estimation of uncertainty of the analytical results. Journal of Chromatography A, 938, pp. 1–8, 2001. doi: http://dx.doi.org/10.1016/S0021-9673(01)01168-2

[35] Stockl, D., D’Hondt, H. & Thienpoint, L.M., Method validation across the disciplines-critical investigation of major validation criteria and associated experimental protocols. Journal of Chromatography B, 877, pp. 2180–2186, 2009. doi: http://dx.doi.org/10.1016/j.jchromb.2008.12.056

[36] Poole, C.F., New trends in solid-phase extraction. Trends in Analytical Chemistry, 22(6), pp. 362–373, 2003. doi: http://dx.doi.org/10.1016/S0165-9936(03)00605-8

[37] Zrostlikova, J., Hajslova, J., Poustka, J. & Begany, P., Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatographyelectrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. Journal of Chromatography A, 973, pp. 13–17, 2002. doi: http://dx.doi.org/10.1016/S0021-9673(02)01196-2

[38] Ferrer, I. & Barcelo, D., Validation of new solid-phase extraction materials for the selective enrichment of organic contaminants from environmental samples. Trends in Analytical Chemistry, 18(3), pp. 181–182, 1999. doi: http://dx.doi.org/10.1016/S0165-9936(98)00108-3