Multi-physics Simulations Using Single-physics Software and Generic Coupling

Multi-physics Simulations Using Single-physics Software and Generic Coupling

Antoine Alexandre Journeaux 

 

Laboratoire de Génie Électrique de Paris 11 rue Joliot Curie, 91192 Gif-sur-Yvette, France

Corresponding Author Email: 
antoine.journeaux@lgep.supelec.fr
Page: 
95-103
|
DOI: 
https://doi.org/10.3166/EJEE.17.95-103
Received: 
23 March 2014
|
Accepted: 
15 May 2014
| | Citation

OPEN ACCESS

Abstract: 

Generic projection methods allow, starting from existing computer programs, the modeling of various type of problems. The present study is an application of the mesh-tomesh data transfer method which aims at solving a coupled magneto-thermal problem using two, seemingly unrelated, computer codes. After a brief description of the projection methods, a numerical comparison in terms of local and global errors is proposed. Then an analytical test case is used to perform benchmarks on coupled problem modeling, hence highlighting the influence of the data processing on the quality of the solution.

Keywords: 

coupled problems modeling, magneto-thermal problems, data projections, data interpolations, numerical methods

1. Introduction
2. Numerical Test of the Data Transfer Methods
3. Application to a Magneto-thermal Case
4. Conclusion
Acknowledgments

This study would not have been possible without the helpful work of J.Y. Roger, research engineer at EDF R&D

  References

Alauzet F., Mehrenberger M. (2009). P1-conservative solution interpolation on unstructured triangular meshes. Rapport de recherche No. RR-6804. INRIA. Retrieved from http://hal.inria.fr/inria-00354509

Bernardi C.,Maday Y., Patera A. (1993). Domain decomposition by themortar element method. In H. G. Kaper,M. Garbey, G.W. Pieper (Eds.), Asymptotic and numerical methods for partial differential equations with critical parameters, Vol. 384, p. 269-286. Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/978-94-011-1810-1_17

Clement P. (1975). Approximation by finite element functions using local regularization. NUMDAM: Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, Vol. 9, No. 2, pp. 77-84.

Hameyer K., Driesen J., De Gersem H., Belmans R. (1999). The classification of coupled field problems. Magnetics, IEEE Transactions on, Vol. 35, No. 3, pp. 1618-1621.

Jiao X., Heath M. T. (2004). Common-refinement-based data transfer between nonmatching meshes in multiphysics simulations. International Journal for Numerical Methods in Engineering, Vol. 61, pp. 2402–2427.

Journeaux A. A., Bouillault F., Roger J.-Y. (2013, 2). Multi-physics problems computation using numerically adapted meshes: application to magneto-thermo-mechanical systems. The European Physical Journal - Applied Physics, Vol. 61. Retrieved from http://www.epjap.org/action/article_S1286004213400988

Journeaux A. A., Nemitz N., Moreau O. (2014). Locally conservative projection methods: benchmarking and practical implementation [Article]. Compel-The International Journal For Computation And Mathematics In Electrical And Electronic Engineering, Vol. 33, No. 1-2, pp. 663-687.

Nemitz N.,Moreau O., Ould-Rouis Y. (2011, july). Magneto-thermal coupling: A conservativebased method for scalar field projection. In 18th Conference on the Computation of Electromagnetic Fields (Compumag 11), Sydney, Australia, Jul 12-15, 2011,, Vol. 18.

Ren Z., Razek A. (1994, apr). Modelling of dynamical behaviours of electro-magnetomechanical coupled systems. In Computation in electromagnetics, 1994. second international conference on, p. 20 -23.

Tsukerman I. (1992). Overlapping finite elements for problems with movement. Magnetics, IEEE Transactions on, Vol. 28, No. 5, pp. 2247-2249.