Magnetic Modeling of Radial-flux And Axial-flux Permanent-magnet Motors For Direct Drive Automotive

Magnetic Modeling of Radial-flux And Axial-flux Permanent-magnet Motors For Direct Drive Automotive

Romain-Bernard Mignot Didier Chamagne Frédéric Dubas Christophe Espanet 

ENERGY Department, University of Franche-Comté (UFC) FEMTO-ST Institute (UMR CNRS 6174), Belfort, France

Page: 
475-494
|
DOI: 
https://doi.org/10.3166/EJEE.17.475-494
Received: 
2 March 2015
| |
Accepted: 
23 September 2015
| | Citation

OPEN ACCESS

Abstract: 

This paper presents an innovative motorization, i.e., an axial-flux permanentmagnet (PM) motor (AFPMM), for direct drive automotive, mainly for electric vehicles (EVs). The AFPMM has been designed from a three-dimensional (3-D) finite-element analysis (FEA). To demonstrate these electromechanical performances, this motorization has been compared to a radial-flux PM motor (RFPMM) having the same outer diameter and the same rotor polarity. The RFPMM has been simulated by using a two-dimensional (2-D) FEA. The optimization procedure is based on a multi-parametric approach with FEA. Comparison of the results between the two electrical machines has been presented supporting the conclusion that this AFPMM will provide interesting industrial perspectives.

Keywords: 

direct drive automotive, finite-element analysis, optimization, permanent-magnet, synchronous machine.

1. Introduction
2. Technical Specifications
3. Choice of the AFPMM
4. Presentation of the AFPMM
5. 3-D FEA of the AFPMM
6. Presentation of the RFPMM
7. Comparison of Two Motorizations Optimized by Multiple and Parametric FEA Simulations
8. Conclusion
Acknowledgments

The work presented in this paper has been achieved in the framework of the TRAX project, which is carried out by a consortium of industrial companies (Nief-Plastic, R. Bourgeois, Schneider-Electric, Peugeot-Jappy, Phenix-International) and laboratories of the university and the CNRS (Department of ENERGY of the FEMTO-ST Institute – Scientific National Research Center and INSA-Lyon). This project has been selected by the French FUI (Interministerial Funds) and the French cluster “Vehicule Du Futur” and will be co-funded by the regional fund of for innovation and the French Government. The goal of the project is to develop a new generation of more effective and economical motors for electric and hybrid vehicles. These machines will have a power range from 7.5 to 15 kW, which will enable successful solutions in terms of specific power and energy efficiency for these new vehicles.

  References

Aydin M. Khambadkone A.M., Liu Qinghua (2006). Torque Quality and Comparison of Internal and External Rotor Axial Flux Surface-Magnet Disc Machines. IEEE Transactions on Industrial Electronics.

Aydin M., Huang S., Lipo T.A. (2004). Axial Flux Permanent Magnet Disc machines; A Review. SPEEDAM.

Cavagnino R., Lazzari M., Profumo F., Tenconi A. (2002). A comparison between the axial flux and the radial flux structures for PM synchronous motors, IEEE Transactions on Magnetics.

Cho H-W., Chungnam N., Seok-Myeong J., Sang-Kyu C. (2006). A Design Approach to Reduce Rotor Losses in High-Speed Permanent Magnet Machine for Turbo-Compressor. IEEE Transactions on Magnetics.

Coles P.C. (2004). Design and Analysis of an Axial Flux Permanent Magnet Machine, IEE Conference on Power Electronics, Machines and Drives, vol. 2, March/April, p. 840-843,

FTPR (1996). Federal Test Procedure Revisions, http://www.epa.gov/otaq/sftp.htm#cycles Hadjidj D. (1999). Conception, optimisation et validation d’un moteur à arceaux hybride à flux transverse, Thèse de doctorat, Université de Franche-Comté, octobre.

Hwang K. (2010). Investigation of Torque and Iron Loss Characteristics of Optimized Spoke type IPMSM Considering Motor Modeling and Motor Drive Circuit, IEE Proc. Elect. Power Appl.

Hosseini S., Moghani J.S., Ershad N.F. (2011). Design, Prototyping, and Analysis of a Novel Modular Permanent-Magnet Transverse Flux Disk Generator, IEEE Transactions on Magnetics.

Hwang C-C., Ping-Lun L., Chuang F.C., Cheng-Tsung L. (2009). Optimization for Reduction of Torque Ripple in an Axial Flux Permanent Magnet Machine, IEEE Transactions on Magnetics.

Jabbar M.A. et al. (2001). Design and Analysis of Exterior and Interior Type High-Speed Permanent Magnet Motors. Proc. Aust. University Power Electronics Conference.

Jung Y-B., Long T., Nelson J., Landon C. (2008). Unique Axial Flux Motor Design Delivers Superior Torque Density. EET-2008 European Ele-Drive Conference International Advanced Mobility Forum Geneva, Switzerland, March 11-13.

Kroeze Ryan C., Philip T. (201l). Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations. Illinois University.

Kurronen P. (2003). Torque Vibration Model of Axial-Flux Surface Mounted Permanent Magnet Synchronous Machine, Thèse de Doctorat de l’Université de Lappeenranta.

Marignetti F., Giovanni T., Cancelliere P., Delli Colli V. (2006). Electromagnetic and Mechanical design of a Fractional-slot-windings Axial-flux PM synchronous machine with Soft Magnetic Compound Stator, IAS.

Mignot R-B., Espanet C., Dubas F., Chamagne D. (2013). Design of an Axial Flux PM Motor using Magnetic and Thermal Equivalent Network. Eur. Phys. J. Appl. Phys. (EPJAP), vol. 63, n° 3, 1-14 September.

NRCQL (2002) Norme Régissant la Catégorie des Quadricycles Lourds, “Réglementation d’ordre général : 1997 24 CE et 2002 24 CE_Réglementation sur le Couple et la puissance : 2002-41 CE _ Réglementation sur les masses et dimensions : 1993 93 CE. http://ec.europa.eu/enterprise/sectors/automotive/documents/directives/directive-2002-24-ec_en.htm

Parviainen A. (2005). Performance comparison between low speed axial-flux and radial-flux permanent magnet machine including mechanical constraints. IEEE Transactions on Magnetics.

Poirot M. (2010). Enhanced Thermal Conductivity of an Epoxy-Matrix Composite Using AlN and BN fillers, ECNP Pragues.

Qu R., Aydin M., Lipo T.A. (2006). Performance comparison of dual-rotor Radial-flux and axial-flux permanent-magnet BLDC machines, IEEE Transactions on Magnetics.

Saint Michel J. (2007). Bobinage des machines tournantes, édition Techniques de l’ingénieur. U.S_EPA (2010). Environmental Protection Agency, http://www.epa.gov/nvfel/testing/dynamometer. Htm

Wurtz F. (2005). Statut et nature des processus de conception que nous utilisons en électrotechnique et possible rationalisation et automatisation. EF 2005, Grenoble.