Design and Realization of Deep Trench Superjunction Diode for 600V Applications

Design and Realization of Deep Trench Superjunction Diode for 600V Applications

Sylvain Noblecourt Josiane Tasselli Frédéric Morancho Karine Isoird Patrick Austin Pascal Dubreuil Aurélie Lecestre 

CNRS, LAAS, 7 av. du colonel Roche, 31400 Toulouse, France

Univ de Toulouse, UPS, LAAS, 31400 Toulouse, France

Univ de Toulouse, LAAS, 31400 Toulouse, France

Page: 
345-361
|
DOI: 
https://doi.org/10.3166/EJEE.17.345-361
Received: 
3 February 2015
| |
Accepted: 
27 October 2015
| | Citation

OPEN ACCESS

Abstract: 

The purpose of this paper is to present the Deep Trench SuperJunction Diode (DT- SJDiode) optimization and realization with a 600V breakdown voltage. We present technological and geometrical parameters influences on the breakdown voltage with simulations performed with Sentaurus TCAD. Previous works allowed to validate some critical technological process steps and to create a technological process for 1200 V breakdown voltage applications. The main point here is to optimize those process steps (trench verticality, termination fulfilling...), which have an important influence on the electrical properties, in order to fabricate a 600 V breakdown voltage DT-SJDiode.

Keywords: 

superjunction diode, deep trench termination, BenzoCycloButene

1. Introduction
2. Definitions and Principles
3. Optimization of Diode Parameters
4. Experimental Results
5. Conclusion
Acknowledgements

For this work, the authors acknowledge the support of the French RENATECH Network and the French Agence Nationale de la Recherche (ANR) under reference ANR-2011-B509-033 (“SUPERSWITCH” project)

  References

Chen Q. (2010). Characterization of reactive ion etching of benzocyclobutene in SF6/02 plasmas. Microelectronic Engineering, 87, p. 1945-1950

Chung C-K. (2004). Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system. Journal of Micromechanics and Microengineering, 14, p. 656- 662

Dow Chemical Company Processing for CYCLOTENE 4000 Series Photo BCB Resins, Février 2005.

Fujihira T. (1997). Theory of semiconductor superjunctions devices. Japanese Journal of Applied Physics, vol. 36, p. 6254-6262.

Learmer F. (2003). Method of anisotropic etching of silicon. Patent n° 6,531,068 B2.

Lorenz L. (1999). COOLMOS™ – a new milestone in high voltage power MOSFET. ISPSD, p. 3-10.

Nizou S. (2006). Deep Trench doping by plasma immersion ion implantation in silicon. 16th International conference on Ion Implantation Technology, p. 229-232.

Sagio M. (2000). MDMESH™: innovative technology for high voltage power MOSFETs.

ISPSD, p. 65-68.

Théolier L. (2009). A new junction termination technique: the Deep Trench Termination (DT2). ISPSD, p. 176-179.

Théolier L. (2009). A New Junction Termination Using a Deep Trench Filled With BenzoCycloButene. IEEE Electron Device Letters, vol. 30, n° 6, p. 687-689.

Théolier L. (2008). Conception de transistors MOS haute tension (1200 V) pour l’électronique de puissance. Thesis.