Static Magnetometer Suitable for Weakly Permeable Magnetic Fluids

Static Magnetometer Suitable for Weakly Permeable Magnetic Fluids

Highlighting Method of Anisotropy Assessment

Mickaël Petit Afef Kedous-Lebouc Olivier Geoffroy Yvan Avenas Wahid Cherief 

SATIE, ENS Cachan - CNAM - Université de Cergy Pontoise - CNRS UMR8029 61, Avenue du Président Wilson, 94230 Cachan, France

Univ. Grenoble Alpes, CNRS, G2Elab, 38000 Grenoble, France

Corresponding Author Email: 
mickael.petit@satie.ens-cachan.fr; (afef.lebouc; olivier.geofroy; yvan.avenas; wahid.cherief)@g2elab.grenoble-inp.fr
Page: 
327-344
|
DOI: 
https://doi.org/10.3166/EJEE.17.327-344
Received: 
4 March 2015
| |
Accepted: 
15 September 2015
| | Citation

OPEN ACCESS

Abstract: 

Ferrofluids have a highly nonlinear magnetic behavior. Moreover, their colloidal nature may, in certain circumstances, make anisotropic by forming chains. A fine characterization of these liquids is essential. However, conventional measurement methods, setting in motion the samples tested are ineffective against these materials. The following article highlights a static method to draw the characteristic J(H) of a sample of ferrofluid. It consists in four parts. The first describes the measurement principle and the mathematical method involved. The second part of the article shows how the magnetometer was designed, implemented and calibrated. In the third part, the magnetometer is tested on a solid sample slightly permeable. Down results obtained are compared to measurement by extraction. Finally, a fourth part shows thanks to a numerical simulation that the device is able to highlight the isotropic or anisotropic nature of the test sample.

Keywords: 

magnetic characterization of ferrofluids and low permeability materials, instrumentation, magnetometer, static sample

1. Introduction
2. Magnetometer Description
3. Experimental Setup
4. Anisotropy Quantification
5. Conclusion
  References

Burmundez-Torres E. (2007). Design and mechanical characterization of a magnetocaloric pump. Thèse en mécanique University of Puerto-Rico.

Bacri J.C. (1995). Liquides magnétiques ou ferrofluides (éd. ref D2180). Paris: Edition T.I.

Cherief W. (2014). Intensification des transferts de chaleur, par convection forcée en cuite de section carrée avec des ferrofluides, Acte de congrès, SGE 2014, Cachan.

Chen D.X. (2006). Fluxmetric and magnetometric demagnetizing factors for cylinders, J. Mag. Mater. 306, p. 135-146.

Love L.J. (2005). Ferrofluid field induced flow for microfluidic applications. IEEE Transactions on Mechatronics, vol. 10, n° 1, p. 68-76.

Matsuki H. (1977). Experimental considerations on a automatic cooling device using temperature-sensitive magnetic fluid, IEEE Transactions on Magnetics , vol. 13, p. 114- 1145.

Merle R. (1993). Utilisation des aimants Néodyme-Fer-Bore dans les Machines électriques, Thèse en Génie Electrique, INPG, Grenoble, 1993.

Nencib N. (1996). Performance evaluation of a large rotational single sheet tester, J. Mag.

Mag. Mater. 160, p. 174-176

Odenbach S. (2006). Handbook of magnetic material, (éd. Elsevier), Elsevier Science.

Petit M. (2013). Experimental study of a static system based on a magneto-thermal coupling in ferrofluids. International Journal of Refrigeration, vol. 37, p. 201-208

Petit M., Kedous-Lebouc A., Avenas Y., Cherief W., Rulliere E. Anceau B. (2014). Static Sample Magnetometer: A New Characterization Method for Low Permeability Materials and Ferrofluids. Magnetics, IEEE Transactions on, vol. 50, n° 4, p. 1-4, April.

Petit M. (2012). Contribution à l‘étude des systèmes de refroidissement basés sur le couplage magnéto-thermique dans les ferrofluides à faible température de Curie, Thèse en Génie Electrique, Université de Grenoble.

Philip J. (2007). Enhancement of thermal conductivity in magnetite based nanofluid due to the chainlikes structures, Appl. Phys. Lett., vol. 91, p. 203108

Rosenzweig R. (1997). Ferrohydrohynamics, Ed. Courier Dover Publication, Dover, Courier Dover Publication.