A Study on Space Charge Distribution in LDPE Nanocomposites for Future Electric Power Applications

A Study on Space Charge Distribution in LDPE Nanocomposites for Future Electric Power Applications

Ahmed Thabet Mohamed

Nano-Technology Research Center Faculty of Energy Engineering, Aswan University, Sahary City, 81528, Aswan, Egypt

Corresponding Author Email: 
athm@aswu.edu.eg
Page: 
189-202
|
DOI: 
https://doi.org/10.3166/EJEE.17.189-202
Received: 
27 November 2013
| |
Accepted: 
25 June 2015
| | Citation

OPEN ACCESS

Abstract: 

Nanotechnology techniques are used for changing properties of polymers to be more reliability in the future of electrical power applications.  This paper presents the effect of small amounts of nanometer size fillers (Clay, or ZnO or Al2O3) that are homogeneously dispersed by only several weight percentages in low density polyethylene (LDPE) on space charge characterization. Pulsed electroacoustic (PEA) system used to study the changing in the accumulation conduction phenomena, the amount of stored charges, and the trap density distribution in new low density polyethylene nanocomposite insulating materials with depolarization current. It has been controlled in electric and dielectric characterization of the new low density polyethylene nanocomposite insulating materials for enhancing electrical power applications. 

Keywords: 

space charge, nanocomposite, PEA system, polymers, low density polyethylene, nanoparticles.

1. Introduction
2. Experimental setup
3. Results and discussion
5. Conclusions
Acknowledgements

The present work was supported by the Science and Technology Development Fund (STDF), Egypt, Grant No: Project ID 505. PEA system measurements were done in Electrical and Electronic Engineering Dept., University of Leicester, UK.

  References

Cai Ch., Li X., Yin Y., Li Z., Jiang P. (2008). Research on space charge distribution in composite of low density polyethylene and nano silver. Proceedings of international symposium on electrical insulating materials, Yokkaichi, Mie, Japan, September 7-11, p. 155-158.  

Das S., Gupta N. (2010). Study of space charge characteristics in epoxy resin and its nanocomposites. International conference on solid dielectrics, Potsdam, July 4-9, Germany, p. 1-4.  

Fleming R. Ammala J., A., Casey P.S., Lang S.B. (2008). Conductivity and space charge in LDPE containing nano- and micro-sized ZnO particles. IEEE transactions on dielectrics and electrical insulation, vol. 15, n° 1, p. 118-126. 

Fleming R. J., Pawlowski T., Ammala A., Casey P. S., Lawrence K. A. (2005). Electrical Conductivity and Space Charge in LDPE containing TiO2 Nanoparticles. IEEE transactions on dielectrics and electrical insulation, vol. 12, n° 4, p. 745-753. Gouda O., Thabet A. (2014). Thermal experimental dielectric characterization of cost-fewer low-density polyethylene nanocomposites. Advances in Electrical and Electronic Engineering Journal. vol. 12, n° 5, p. 537-546. 

Gouda O., Thabet A., Mubarak Y. A., Samir M. (2014). Nanotechnology effects on space charge relaxation measurements for polyvinyl chloride thin films. International Journal of Electrical Engineering and Informatics (IJEEI), vol. 6, n° 1, p. 1-12. 

Ishimoto K., Kanegae E., Ohki Y., Tanaka T., Sekiguchi Y., Murata Y., Reddy C. C. (2009). Superiority of dielectric properties of ldpe/mgo nanocomposites over microcomposites. IEEE transactions on dielectrics and electrical insulation, vol. 16, n° 6, p. 1735-1742. 

Jiandong W., Wenhui L., Yu Z., Qiaohua W., Yi Y. (2010). Effect of nano-additive size on the space charge behaviour in ldpe/sio2 nanocomposite. IEEE international conference on solid dielectrics, Potsdam, Germany, July 4-9, p. 1-4. 

Lewis T.J. (2005). Interfaces: nanometric dielectrics. J. Phys.D: Appl. Phys., vol. 38, p. 202212. Lewis T. J. (2004). Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE trans. dielectr. electr. insul, vol. 11, p. 739-753. 

Li Y., Yasuda M., Takada T. (1994). Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics. IEEE trans. dielectr. electr. insul., vol. 1, p. 188195. Nelson J.K., Fothergill J.C. (2004). Internal charge behaviour of nanocomposites. Nanotechnology, vol. 15, p. 586-595. 

Nelson J.K. and Hu Y. (2005). Nanocomposite dielectrics – properties and implications. J. Phys. D: Appl. Phys., vol. 38, p. 213-222. 

Murakami Y., Nemoto M., Okuzumi S., Masuda S., Nagao M., Hozumi N., Sekiguchi Y., Murata Y. (2008). DC conduction and electrical breakdown of mgo/ldpe nanocomposite, IEEE transactions on dielectrics and electrical insulation, vol. 15, n° 1, p. 33-38. 

Matsui K., Tanaka Y., Takada T., Fukao T., Fukunaga K., Maeno T., Alison J. M. (2005). Space charge behavior in low-density polyethylene at pre-breakdown. IEEE transactions on dielectrics and electrical insulation, vol. 12, n° 3, p. 406-415. 

Takada T., Hayase Y., Tanaka Y., Okamoto T. (2008). Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE transactions on dielectrics and electrical insulation, vol. 15, n° 1, p. 152-160. 

Tanaka T., Montanari G. C., Mulhaupt R. (2004). Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE trans. on DEI, vol. 11, p. 763-784. 

Tian F., Lei Q., Wang X., Wang Y. (2012). Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE transactions on dielectrics and electrical insulation, vol. 19, n° 3, p.763-769. 

Thabet A. (2013a). Influence of cost-less nanoparticles on electric and dielectric characteristics of polyethylene industrial materials, International Journal of Electrical Engineering And Technology (IJEET), vol. 4, n° 1, p. 58-67. 

Thabet A. (3013b). Experimental investigation on thermal electric and dielectric characterization for polypropylene nanocomposites using cost-fewer nanoparticles. International Journal of Electrical Engineering and Technology (IJEET), vol. 4, n° 2, p. 1-12. 

Thabet A. (2015). Experimental enhancement for dielectric strength of polyethylene insulation materials using cost-fewer nanoparticles. International Journal of Electrical Power & Energy Systems (IJEPES), vol. 64, p. 469-475.  

Thabet A. (2015). Experimental verification for improving dielectric strength of polymers by using clay nanoparticles. Advances in Electrical and Electronic Engineering Journal, vol. 13, n° 2, p. 182-190. 

Wang X., He H.Q., Tu D.M., Lei C., Du Q.G. (2008). Dielectric properties and crystalline morphology of low density polyethylene blended with metallocene catalyzed polyethylene. IEEE transactions on dielectrics and electrical insulation, vol. 15, n° 2, p. 319-326.