A review of energy harvesting technology and its potential applications

A review of energy harvesting technology and its potential applications

Indrajit SilSagar Mukherjee Kalyan Biswas 

ECE Department, MCKV Institute of Engineering, Howrah 711204, India

Corresponding Author Email: 
sil.indrajit25@gmail.com
Page: 
33-38
|
DOI: 
https://doi.org/10.18280/eesrj.040202
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

In the recent years, obtaining a sustainable form of energy to power various autonomous wireless & portable devices is increasingly becoming a matter of concern & various alternate sources of energy have been explored. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. This paper discusses energy harvesting or energy scavenging as an efficient approach to cater to the energy needs of portable electronics, review recent advancement in the field of power harvesting & present the current state of power harvesting in its drive to create completely self-powered devices.

Keywords: 

Energy Harvesting, Piezoelectric, Thermal, Thermoelectric, Vibration.

1. Introduction
2. Source of Energy Harvesting
3. Application of Energy Harvesting
4. Current Status of Energy Harvesting Techniques
5. Conclusions
  References

[1] Faruk Y., Coogler K.L. (2014). Low power energy harvesting with a thermoelectric generator through an air conditioning condenser, 121st ASEE Annual Conference & Exposition, Indianapolis, IN, Paper ID. Vol. 10552.

[2] William Y. (1996). Analysis of micro-electric generator for Microsystems, Sensors & actuators A52, pp. 8-11. DOI: 10.1109/SENSOR.1995.717207

[3] Müller G., Möser M. (2012). Handbook of Engineering Acoustics, Springer, p. 7. ISBN 9783540694601.

[4] Fthenakis V., Kim H.C. (2009). Land use & electricity generation: A life-cycle analysis, Renewable & Sustainable Energy Reviews, Vol. 13, No. 6-7, p. 1465. 

[5] Beasley J.S., Miller G.M. (2008). Modern Electronic Communication (9th ed.). pp. 4-5. ISBN 978-0132251136.

[6] Laufer G. (1996). Introduction to Optics & Lasers in Engineering, Cambridge University Press, p. 11, ISBN 978-0-521-45233-5.

[7] Mohammadreza A., Nasser M. (2016). A thermal energy harvesting power supply with an internal startup circuit for pacemakers, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24, No. 1. DOI: 10.1109/TVLSI.2015.2391442

[8] Dean T. (2010). Network + Guide to Networks (5th ed.), Cengage Learning, Boston, ISBN 978-1-4239-0245-4.

[9] Mitcheson P.D. (2008). Energy harvesting from human & machine motion for wireless electronic devices, Proceedings of IEEE, pp. 1457-1486. DOI: 10.1109/JPROC.2008.927494

[10] Shenck, Nathan S., Joseph A. (2001). Energy scavenging with shoe-mounted piezo electrics, IEEE Micro, Vol. 3, pp. 30-42. DOI: 10.1109/40.928763

[11] Chow, Tin-tai, Li C.Y., Zhang L. Innovative solar windows for cooling-demand climate, Solar Energy Materials & Solar Cells, pp. 212-220. DOI: 10.1016/j.solmat.2009.09.004

[12] Loughran J. University of Surrey. Light-absorbing graphene to power “smart wallpaper” and IoT from https://eandt.theiet.org/content/articles/2016/02/light-absorbing-graphene-to-power-smart-wallpaper-and-iot/, accessed on 29 February 2016.

[13] Chandler D.L., Massachusetts Institute of Technology, Solar cell as light as a soap bubble, from http://news.mit.edu/2016/ultrathin-flexible-solar-cells-0226, accessed on 25 February 2016. 

[14] Kymissis J., Kendall C., Paradiso J., Gershenfeld N. (1998). Parasitic power harvesting in shoe, digest of papers, Second International Symposium on Wearable Computers, Pittsburgh, Pennsylvania, USA, pp. 132-139. DOI: 10.1109/ISWC.1998.729539

[15] Roundy S., Wright P.K. (2004). A piezoelectric vibration based generator for wireless electronics, Smart Materials & Structures, Vol. 13, pp. 1131-1142. DOI: 10.1088/0964-1726/13/5/018

[16] Roundy S., Wright P.K., Rabaey J. (2003). A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, Vol. 26, No. 11, pp. 1131-1144. DOI: 10.1016/S0140-3664(02)00248-7

[17] Sodano H.A., Park G., Inman D.J. (2004). Estimation of electric charge output for piezoelectric energy harvesting, Strain, Vol. 40, pp. 49-58. DOI: 10.1111/j.1475-1305.2004.00120.x

[18] Beeby S.P., Tudor M.J., White N.M. (2006). Energy harvesting vibration sources for microsystems applications, Measurement Science & Technology, Vol. 17, pp. 175-195. DOI: 10.1088/0957-0233/17/12/R01

[19] Beeby S.P., Torah R.N., Tudor M.J. Glynne-Jones P.O., Donnell T., Saha C.R., Roy S. (2007). A micro electromagnetic generator for vibration energy harvesting” Journal of Micromechanics & Micro engineering, Vol. 17, pp. 1257-1265. DOI: 10.1088/0960-1317/17/7/007

[20] Barker S., Vassilevski K.V., Wright N.G., Horsfall A.B. (2010). High temperature vibration energy harvester system, Conference, IEEE sensor, Kona, HI, pp. 300-303. DOI: 10.1109/ICSENS.2010.5689870

[21] Minazara, Vasic D., Costa F. (2014). Piezoelectric generator harvesting bike vibrations energy to supply portable devices, Australian Mining Technology Conference, pp. 1-6.

[22] Mo C., Radziemski L.J., Clark W.W. (2010). Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating systems, Smart Materials & Structures, Vol. 19, No. 2, article ID 025016.

[23] Mo C., Wright R., Slaughter W.S., Clark W.W. (2006). Behaviour of a unimorph circular piezoelectric actuator, Smart Materials & structures, Vol. 15, No. 4, pp. 1094-1102.

[24] Kotmann G., Hofmann H.F., Lesieutre G.A. (2003). Optimized piezoelectric energy harvesting circuit using step down converter in discontinuous conduction mode, IEEE transactions on power Electronics, Vol. 18, No. 2, pp, 696-703. DOI: 10.1109/TPEL.2003.809379

[25] Kameierski T.J., Beeby S. (2011). Energy harvesting systems: principles, modelling & applications, Springer science, Berlin, Heidelberg.

[26] Sodano H.A., Inman D.J. (2004). A review of power harvesting from vibration using piezoelectric materials, The Shock & Vibration Digest, Vol. 36, pp. 197-205. DOI: 10.1177/0583102404043275

[27] Carroll D., Duffy M. (2005). Demonstration of wearable power generator, Proceedings of the 11th European Conference on Power Electronics & Applications, Dresden, Germany, pp. 1-10. DOI: 10.1109/EPE.2005.219730

[28] Wu C. (1996). Analysis of waste-heat thermoelectric power generators, Applied Thermal Engineering, Vol. 16, pp. 63-69. DOI: 10.1016/1359-4311(95)00014-5

[29] Rowe M.D., Min G., Williams S.G., Aoune A., Matsuura K., Kuznetsov V.L., Fu L.W. Thermoelectric recovery of waste heat – case studies. DOI: 10.1109/IECEC.1997.661919

[30] Rowe D.M., Kuznetsov V.L., Kuznetsova L.A., Min G. (2002). Electrical & thermal transport properties of intermediate-valence YbAl3, Journal of Physics D: Applied Physics, pp. 2183-2186. DOI: 10.1088/0022-3727/35/17/315

[31] Stordeur M., Stark I. (1997). Low power thermoelectric generator-self-sufficient energy supply for micro systems, Proc. 16th Int. Conf. Thermo electrics, pp. 575-577. DOI: 10.1109/ICT.1997.667595

[32] Fleming J., Ng W., Ghamaty S. (2004). Thermo electric based power system for unmanned-air-vehicle/microair-vehicle applications, Journal of Aircraft, Vol. 41, pp. 674-676.

[33] Wojciechowski K., Merkisz J., Fuć P., Lijewski P., Schmidt M., Zybała R. (2007). Study of recovery of waste heat from exhaust of automotive engine, 5th European Conference on Thermo electrics, Odessa, Ukraine, pp. 194-198. DOI: 10.1007/s11664-009-1010-1

[34] Birkholz U., Grob U.E., Riffel M., Roth H., Stohrer U. (1988). Conversion of waste exhaust heat in automobile using FeSi2 thermo elements, Proc. of the 7th International Conference on Thermoelectric Energy Conversion, Arlington, VA, pp. 124-128.

[35] Matsubara K. (2002). Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles, Proc. of the 21st International Conference on Thermoelectronics, August 25-29th, Portland, OR, pp. 418-423. DOI: 10.1109/ICT.2002.1190350

[36] Wang J., He J., Chen J., Zhou Y. (2002). Regenerative characteristics of electro caloric Stirling or Ericsson refrigeration cycles, Energy Conversion & Management, Vol. 43, pp. 2319-2327.

[37] Gonzalo J.A. (1976). Ferroelectric materials as energy converters, Ferroelectrics, Vol. 11, pp. 423-429.

[38] Olsen R.B., Bruno D.A., Briscoe J.M., Jacobs E.W. (1985). Pyroelectric conversion cycle of vinylidene fluoride-trifluoro ethylene copolymer, Journal of Applied Physics, Vol. 57, pp. 5036-5042. DOI: 10.1063/1.335280

[39] Olsen R.B., Bruno D.A., Briscoe J.M., Dullea J. (1985). High electric field resistivity & pyroelectric properties of vinylidene fluoride-trifluoro ethylene copolymer, Journal of Applied Physics, Vol. 58, p. 2854. DOI: 10.1063/1.335857

[40] Guyomar D., Sebald G., Lefeuvre E., Khodayari A. (2009). Toward heat energy harvesting using pyroelectric material, Journal of Intelligent Material Systems & Structures, Vol. 20, pp. 265-271. DOI: 10.1177/1045389X08093564

[41] Xie J., Lee C.K., Feng H.H. (2010). Design, fabrication, & characterization of CMOS mems-based thermoelectric power generators, Journal of Microelectromechanical Systems, Vol. 19, No. 2. DOI: 10.1109/JMEMS.2010.204103