Feature extraction and classification using deep convolutional neural networks, PCA and SVC for face recognition

Feature extraction and classification using deep convolutional neural networks, PCA and SVC for face recognition

Mohammed Kamel Benkaddour Abdennacer Bounoua  

Laboratory Communication Network & Architecture Multimedia RCAM DJILLALILIABBES University Sidi Bel Abbes 22000, Algeria

University Kasdi Marbah, FNTIC Faculty, Ouargla 30000, Algeria

Corresponding Author Email: 
30 June 2017
| Citation



Recently, the facial recognition has aroused the interest of the scientific community, this technique of biometric that is effective, non-intrusive and contactless has taken an increasingly important part in the field of research. This paper proposes a face recognition and classification method based on deep learning, in particular Convolutional Neural Network (CNN), which are incredibly a powerful tools that have found great success in image classification and pattern recognition. In this work, the approach to this task is based on the Convolutional Neural Network (CNN) as a powerful feature extraction followed by Support Vector Machines (SVM) as a high classifier. To reduce the dimension of these features, a principal component analysis (PCA) technique is employed. We conduct an extensive evaluation of our methods on the FERET dataset. The results obtained showed that the proposed method CNN combine with PCA and Svc solution provide a significant improvement in performance and enhance the recognition accuracy.


biometrics, face recognition, feature extraction, convolutional neural network, CNN, support vector machines (SVM), SVC, principal component analysis, PCA

1. Introduction
2. Proposed method
3. Datasets
4. Experimental work and results
5. Conclusion

Ahonen T., Hadid A., Pietikainen M. (2004). Face recognition with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 12, pp. 2037-2041. https://doi.org/10.1007/978-3-540-24670-1_36

Andrews R., Diederich J., Tickle A. B. (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based Systems, pp. 373-389. https://doi.org/10.1016/0950-7051(96)81920-4

Bengio Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, No. 1, pp. 43–44. https://doi.org/10.1561/2200000006

Ben-hur A., Horn D., Siegelmann H. T., Vapnik V. (2001). Support vector clustering. Journal of Machine Learning Research, Vol. 2, pp. 125-137. https://doi.org/10.1162/15324430260185565

Bledsoe W. W. (1968). Semiautomatic facial recognition. Technical Report Project 6693, Stanford Research Institute, Menlo Park, California.

Chowdhury A. R., Lin T. Y., Maji S., Learned-Miller E. (2016). One-to-many face recognition with bilinear CNNs. Applications of Computer Vision (WACV), pp. 1-9. https://doi.org/10.1109/WACV.2016.7477593

Ciresan D., Meier U., Masci J., Gambardella L. M., Schmidhuber J. (2013). High performance convolutional neural networks for image classification. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Vol. 2, pp. 1237–1242. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210

Cootes T., Edwards G., Taylor C. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/34.927467

Cortes C., Vapnik V. (1997). Soft Margin Classifier. U.S. Patent No. 5, 640,492.

Dong Y., Zhen L., Shengcai L., Stan Z. L. (2014). Learning face representation from scratch. arXiv preprint arXiv: 1411.7923.

Fukushima K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, Vol. 36, pp. 193–202. https://doi.org/10.1007/BF00344251

Guo G., Li S., Chan K. (2000). Face recognition by support vector machines. The IEEE International Conference on Automatic Face and Gesture Recognition, pp. 196-201. https://doi.org/10.1109/AFGR.2000.840634

Guo S., Chen S., Li Y. (2016). Face recognition based on convolutional neural network and support vector machine. Proceedings of the IEEE International Conference on Information and Automation Ningbo, China. https://doi.org/ 10.1109/ICInfA.2016.7832107

Hinton G. E., Osindero S., Teh Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, Vol. 8, No. 7, pp. 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527

Khiyari H. E., Wechsler H. (2016). Face recognition across time lapse using convolutional neural networks. Journal of Information Security, No. 7, pp. 141-151.

Kirby M., Sirovich L. (1990). Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 1, pp. 103-108. https://doi.org/10.1109/34.41390

Kriegman D. J., Hespanha J. P., Belhumeur P. N. (1996). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. In ECCV. https://doi.org/10.1109/34.598228

Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS '12); Lake Tahoe, Nevada, USA. pp. 1097–1105. https://doi.org/10.1145/3065386

Lawrence S., Giles C. L., Chung T. A., Back A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, Vol. 8, No. 1, pp. 98-113. https://doi.org/10.1109/72.554195

Lecun Y., Bengio Y., Hinton G. E. (2015). Deep learning. Nature, Vol. 521, No. 7553, pp. 436-444. https://doi.org/10.1038/nature14539

Lecun Y., Boser B., Denker J. S., Henderson D., Howard R., Hubbard W., Jackel L. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, Vol. 1, No. 4, pp. 541-551. https://doi.org/10.1162/neco.1989.1.4.541

Lecun Y., Bottou L., Bengio Y., Haffner P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324. https://doi.org/10.1109/5.726791

Lecun Y., Bottou L., Bengio Y., Haffner P. (1999). Object recognition with gradient-based learning. Shape, Contour and Grouping in Computer Vision, pp. 823-823. https://doi.org/10.1007/3-540-46805-6_19

Moody J., Darken C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, Vol. 1, No. 2, pp. 281-294. https://doi.org/10.1162/neco.1989.1.2.281

Moon H., Phillips P. J. (2001). Computational and performance aspects of PCA-based face-recognition algorithms. Perception, Vol. 30, No. 3, pp. 303-321. https://doi.org/10.1068/p2896

Osuna E., Freund R., Girosit F. (1997). Training support vector machines: An application to face detection. In: Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.1997.609310

Petrovska-Delacrétaz D., Chollet G., Dorizzi B. (2009). Guide to biometric reference systems and performance evaluation. Springer, pp. 111. https://doi.org/10.1007/978-1-84800-292-0

Phillips J., Moon H., Rizvi S., Rauss P. (2000). The FERET evaluation methodology for face-recognition algorithms IEEE Trans. Pattern Anal. Mach. Intell., Vol. 22, pp. 1090-1104. https://doi.org/10.1109/34.879790

Samal A., Iyengar P. A. (1992). Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition, Vol. 25, No. 1, pp. 65-77. https://doi.org/10.1016/0031-3203(92)90007-6

Schmidhuber J. (2015). Deep learning in neural networks: An overview. Neural Networks, Vol. 61, pp. 85-117. https://doi.org/10.1016/j.neunet.2014.09.003

Schroff F., Kalenichenko D., Philbin J. (2015). Facenet: A unified embedding for face recognition and clustering. In CVPR. https://doi.org/10.1109/CVPR.2015.7298682

Sun Y., Wang X., Tang X. (2014). Deeply learned face representations are sparse, selective, and robust. arXiv preprint arXiv: 1412.1265. https://doi.org/10.1109/CVPR.2015.7298907

Syafeeza A. R. (2014) Convolutional neural network for face recognition with pose and illumination variation. International Journal of Engineering and Technology (IJET). Vol. 6, No. 1.

Turk M., Pentland A. (1991). Eigenfaces for recognition. Journal of Cognitive Neurosicence, Vol. 3, No. 1, pp. 71-86. https://doi.org/10.1162/jocn.1991.3.1.71

Vincent P., Larochelle H., Lajoie I. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, Vol. 11, No. 12, pp. 3371-3408. https://doi.org/10.1016/j.mechatronics.2010.09.004

Vinod N., Hinton G. E. (2010). Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel. https://doi.org/

Wright J., Yang A., Allen Y., Ganesh A., et al. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No 2, pp. 210-227. https://doi.org/US5640492 A

Yambor W. S., Draper B. A., Beveridge J. R. (2002). Analyzing PCA-based face recognition algorithms: Eigenvector selection and distance measures. In Empirical Evaluation Methods in Computer Vision, pp. 39-60. https://doi.org/10.1142/9789812777423_0003

Yosinski J., Clune J., Bengio Y., Lipson H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems, pp. 3320-3328.

Zhang Y., Zhao D., Sun J. (2016). Adaptive convolutional neural network and it’s application in face recognition. Neural Processing Letters, Vol. 43, pp. 389-399. https://doi.org/10.1007/s11063-015-9420-y

Zhao W., Chellappa R., Phillips P. J., Rosenfeld A. (2003). Face recognition: A literature survey. ACM Computing Surveys (CSUR), Vol. 35, No. 4, pp. 399-458. https://doi.org/10.1145/954339.954342