Evaluation of condensation heat transfer in air-cooled condenser by dominant flow criteria

Evaluation of condensation heat transfer in air-cooled condenser by dominant flow criteria

Yanán Camaraza-MedinaNislan H. Khandy Ken M. Carlson Oscar M. Cruz-Fonticiella Osvaldo F. García-Morales Diamela Reyes-Cabrera 

Center of Energy Studies and Environmental Technology, Universidad Central de Las Villas, Santa Clara, Cuba

Mechanical & Aerospace Engineering Department, New Mexico State University, NM 88003, USA

Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA

Center of Energy Studies and Environmental Technology, Universidad Central de Las Villas, Santa Clara, Cuba

Technical Sciences Faculty, Universidad de Matanzas, Matanzas, Cuba

Corresponding Author Email: 
ycamaraza1980@yahoo.com
Page: 
76-82
|
DOI: 
https://doi.org/10.18280/mmep.050204
Received: 
24 April 2018
|
Accepted: 
26 May 2018
|
Published: 
30 June 2018
| Citation

OPEN ACCESS

Abstract: 

In this paper, a modification to the dominant flow criteria is presented for the study of heat transfer by confined condensation in Air Cooled Condenser (ACC) systems. The new methodology combines in one single procedure the analysis, which with the current methods requires tedious grouping processes. A new proposal reduces the average error by computing 22% in 88.7% of the available samples and includes the shear stress produced by the steam drag when it flows at speeds greater than 40 m/s. New method is also valid for a vapor quality located between 0.9 and steam flows between 3 and 590 kg/(m2/s-1), values for the Reynolds number for the liquid portion between 660 and 58 540 and the Reynolds number for the vapor portion located between 1 320 and 333 120, internal equivalent diameters of the tubes comprised between 7.4 to 49 mm.

Keywords: 

flow criteria, condensation, deviation, heat transfer

1. Introduction
2. Methods and Validation
3. Trawl Analysis Caused by High Vapor Velocities
4. Conclusions
Acknowledgement
Nomenclature
  References

[1] Dorao CA, Fernandhino M. (2017). Dominant dimensionless groups controlling heat transfer coefficient during flow condensation inside pipes. International Journal of Heat and Mass Transfer 112: 465-479. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.104

[2] Boyko LD, Kruzhilin GN. (1967). Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes. International Journal of Heat and Mass Transfer 10(3): 361-373. https://doi.org/10.1016/0017-9310(67)90152-4.

[3] Kim SM. Mudawar I. (2013). Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. International Journal of Heat and Mass Transfer 56(1–2): 238–250.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.032

[4] Zhang H, Fang X, Shang H, Chen W. (2015). Flow condensation heat transfer correlations. International Journal of Refrigeration 59: 102–114. http://dx.doi.org/10.1016/j.ijrefrig.2015.07.013

[5] Shah MM. (1979). A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer 22(4): 547–556. https://doi.org/10.1016/0017-9310(79)90058-9

[6] Rosson F. (1957). Heat transfer during condensation inside a horizontal tube. Ph.D. dissertation. Rice University, Houston, USA. 

[7] Tandon TN, Varma HK, Gupta CP. (1995). Heat transfer during forced convection condensation inside horizontal tube. International Journal Refrigeration 18(3): 210–214. https://doi.org/10.1016/0140-7007(95)90316-R

[8] Dobson MK, Chato JC. (1998). Condensation in smooth horizontal tubes. Journal Heat Transfer 120(1): 193–213. http://dx.doi.org/10.1115/1.2830043

[9] Cavallini A, Col DD, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G. (2006). Condensation in horizontal smooth tubes: A new heat transfer model for heat exchanger design. Heat Transfer Engineering 27(8): 31–38. https://doi.org/10.1080/01457630600793970

[10] Bohdal T, Charun H, Sikora M. (2012). Heat transfer during condensation of refrigerants in tubular minichannels. Archives of Thermodynamics 33(2): 3–22. http://dx.doi.org/10.2478/v10173-012-0008-x

[11] Camaraza Y. (2017). Introducción a la termotransferencia. Ed. Universitaria, La Habana, Cuba. 

[12] Camaraza Y, Khandy NH, Cruz-Fonticiella OM, Garcia OF. (2017). Abstract of heat transfer coefficient modelation in single-phase systems inside pipes. Mathematical Modelling of Engineering Problems 4(3): 132-136. https://doi.org/10.18280/mmep.040303

[13] Camaraza Y, Cruz-Fonticiella OM, Garcia OF. (2018). Obtención de un modelo para la determinación del coeficiente medio de transferencia de calor por condensación en sistemas ACC. Tecnología Química 38(1): 230-246 http://scielo.sld.cu/pdf/rtq/v38n1/rtq15118.pdf

[14] Lee H, Yoon J, Kim Y, Bansal PK. (2006). Condensing heat transfer and pressure drop characteristics of hydrocarbon refrigerants. International Journal of Heat and Mass Transfer 49: 1922–1927. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.008

[15] Yan Y, Lin T. (1999). Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe. International Journal of Heat and Mass Transfer 42: 697–708. https://doi.org/10.1016/S0017-9310(98)00195-1

[16] Akers WW, Deans HA, Crosser OK. (1959). Condensing heat transfer within horizontal tubes. Chemical Engineering Progress Symposium Series 55(29): 171–176.

[17] Lemmon EW, Huber ML, McLinden MO. (2013) NIST Reference Fluid Thermodynamic and Transport Properties REFPROP, Tech. Rep. 

[18] Tang CC. (2011). A study of heat transfer in non-boiling two-phase gas-liquid flow in tubes for horizontal, slightly inclined, and vertical orientations. Ph.D. dissertation. Oklahoma State University Publishing.

[19] Mollamahmutoglu M. (2012). Study of isothermal pressure drop and non-boiling heat transfer in vertical downward two phase flow. Ms. dissertation. Oklahoma State University Publishing.

[20] Cavallini A, Censi G, Doretti L, Longo GA, Rossetto L, Zilio C. (2003). Condensation inside and outside smooth and enhanced tubes – a review of recent research. International Journal of Refrigeration 26(4): 373–392.

http://dx.doi.org/10.1016/S0140-7007(02)00150-0

[21] Wojtan L, Ursenbacher T, Thome JR. (2005). Investigation of flow boiling in horizontal tubes: Part II. Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer 48(14): 2970–2985. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013

[22] Rifert VG, Sereda VV. (2015). Condensation inside Smooth horizontal tubes: Part 1. Survey of the methods of heat-exchange prediction. Thermal Science 19(5): 1769-1789. https://doi.org/10.2298/TSCI140522036R

[23] Thome JR. (2005). Condensation in plain horizontal tubes: recent advances in modelling of heat transfer to pure fluids and mixtures. Journal of the Brazilian Society of Mechanical Sciences and Engineering 27(1): 23-30. http://dx.doi.org/10.1590/S1678-58782005000100002

[24] Cttani L, Bozzoli F, Raineri S. (2017). Experimental study of the transitional flow regime in coiled tubes by the estimation of local convective heat transfer coefficient. International Journal of Heat and Mass Transfer 112: 825-836. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.003

[25] Bhagwat SM, Ghajar AJ. ((2016). Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined tubes. Experimental Thermal and Fluid Science 79: 301–318. https://doi.org/10.1016/j.expthermflusci.2016.08.004

[26] Derby M, Joon H, Peles Y, Jensen MK. (2011). Condensation heat transfer in square, triangular, and semi-circular mini-channels. International Journal of Heat and Mass Transfer 55(3): 187–197. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.002

[27] Nasser I, Duwairi HM. (2016). Thermal dispersion effects on convection heat transfer in porous media with viscous dissipation. International Journal of Heat and Technology 34(2): 207-212. http://doi.org/10.18280/ijht.340208

[28] Pourmahmoud N, Abbaszadeh M, Rashidzadeh M. (2016). Numerical simulation of effect of shell heat transfer on the vortex tube performance. International Journal of Heat and Technology 34(2): 293-301. http://doi.org/10.18280/ijht.340220

[29] Zhang ZY, Yang JG. (2015). The effect of face-air velocity distribution on heat transfer performance of air-cooled condensers. International Journal of Heat and Technology 33(1): 55-62. http://doi.org/10.18280/ijht.330108

[30] Zhan NY, Xu Y, Wang ZY. (2015). Research on heat-transfer and three-dimensional characteristics of natural convection in a small cavity with heat sources. International Journal of Heat and Technology 33(3): 59-66. http://doi.org/10.18280/ijht.330308

[31] Priyam A, Chand P. (2017). Heat transfer and pressure drop characteristics of wavy fin solar air heater. International Journal of Heat and Technology 35(4): 1015-1022. 

[32] Kezzar M, Tabet I, Chieul M, Nafir N, Khentout A. (2018). Analytical investigation of heat transfer of solar air collector by Adomian decomposition method, Mathematical Modelling of Engineering Problems 5(1):40-45, DOI: https://doi.org /10.18280/mmep.050106

[33] Alam MS, Islam T, Uddin MJ. (2016). Mathematical modelling for heat transfer of a micropolar fluid along a permeable stretching/shrinking wedge with heat generation/absorption. Mathematical Modelling of Engineering Problems 3(1): 1-9. https://doi.org/10.18280/mmep.030101

[34] Zhang W, Du X, Yang L, Yang Y. (2016). Research on performance of finned tube bundles of indirect air-cooled heat exchangers. Mathematical Modelling of Engineering Problems 3(1): 47-51. https://doi.org/10.18280/mmep.030108