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 In this paper, a modification to the dominant flow criteria is presented for the study of heat 

transfer by confined condensation in Air Cooled Condenser (ACC) systems. The new 

methodology combines in one single procedure the analysis, which with the current methods 

requires tedious grouping processes. A new proposal reduces the average error by computing 

22% in 88.7% of the available samples and includes the shear stress produced by the steam drag 

when it flows at speeds greater than 40 m/s. New method is also valid for a vapor quality located 

between 0.9 and steam flows between 3 and 590 kg/(m2/s-1), values for the Reynolds number 

for the liquid portion between 660 and 58 540 and the Reynolds number for the vapor portion 

located between 1 320 and 333 120, internal equivalent diameters of the tubes comprised 

between 7.4 to 49 mm. 
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1. INTRODUCTION 

 

The totality of the condensation processes found in the 

application of dry condensation systems (ACC) to power 

plants are related to condensation on the interior surfaces of 

horizontal or vertical pipes. The analysis of the heat transfer of 

condensation inside pipes is complicated by the fact that the 

speed of the steam and the rapidity of the accumulation of 

liquid on the walls of the tubes strongly influence it [1-2]. 

The volume of steam is limited by the walls inside the tubes. 

A large amount of steam was condensed in the tubes because 

it was considerable long. The steam flows inside the tube and 

condenses as it moves along it. The steam flow is oriented and 

its speed can be very high (more than 100 m/s). The friction at 

the vapor-condensate interface can therefore be considerable. 

  If the direction of the steam flow coincides with that of the 

condensate flowing by gravity. The friction produces an 

acceleration of the latter, thinning the film and increasing the 

surface heat transfer coefficient. If the steam flows in the 

opposite direction to that of the condensate, the film can be 

decelerated, its thickness increased, and the intensity of 

surface heat transmission reduced. An increase in the steam 

speed can cause the drag of the film and its partial separation 

from the wall. Which produces an increase in the heat 

transmission, therefore inside the pipes. This can depend on 

the dynamic effect of the steam on the condensate film [3-4]. 

This effect manifests itself in different ways, depending on 

the direction of gravity and friction, which is determined not 

only by the position of the tube in space, but by the direction 

of the steam flow, up or down, in inclined or vertical tubes. 

In the available literature and consulted due to the complexity 

of the problem in question the process of heat transfer by 

condensation in ACC systems is divided into four intervals or 

study areas. Which becomes somewhat cumbersome, 

especially in multiple systems of panels ACC, because the 

lengths of the tubes are already appreciable and therefore the 

simultaneity of two or more zones in the same system is 

frequent. This drawback is currently a limiting factor in 

modern power plants, since the output, powers are high and 

therefore, the heat volumes to be rejected in these also take 

appreciable values, which requires the combined operation of 

multiple systems of ACC panels. 

At present, there is no single methodology to solve these 

limitations and errors in the results obtained are lower than 

those computed with the use of currently available methods 

(25%). For this reason, the authors are imposed as fundamental 

task in the present investigation to develop in a compact way 

a methodology that includes all of these effects in the process 

of heat transfer by condensation, and that is valid in the four 

known regions and whose average error is less than 25% [3-4]. 

For them, available experimental quantities obtained from 

direct communication with specialists of recognized prestige 

in the area of action at international level, as well as values 

reported in works elaborated with intentions similar to the 

present one. 

 

 

2. METHODS AND VALIDATION 
 

2.1 Criteria for differentiation of the dominant 

condensation flow 
 

In a previous work, the authors developed a methodology 

for obtaining the average heat transfer coefficient for the 

condensation of water vapor inside ACC systems, considering 
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that for this purpose the steam has a negligible speed. This 

expression was obtained by the author and his collaborators 

and is given by [5]: 

 

𝑁𝑢 = 0.923√𝑑3
(𝜌𝐿−𝜌𝑉)𝑔𝑠𝑖𝑛𝜙(𝑟𝐿𝑉+

3

8
𝐶𝑝𝐿(𝑇𝑆𝑎𝑡−𝑇𝑝))

𝜈𝐿𝜆𝐿(𝑇𝑆𝑎𝑡−𝑇𝑝)𝑑

4

          (1) 

 

However, the different operative situations make the 

criterion of dominant flow inside the ACC tubes variable, 

which is why it is necessary to determine which is the 

dominant criterion for later proceeding to the case analysis. A 

criterion used to solve this problem is the one given by 

Martinelli-Lockhart [6], it is based on the combination of two 

dimensionless criteria which are: 
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Dimensionless speed: 
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The results obtained through the application of relations (2) 

and (3) make it possible to identify the dominant flow 

criterion, using the identifiers provided in table 1 for this 

purpose. 

 As can be seen in table 1, the condensation process of water 

vapor inside the pipes of an ACC system is extremely 

complex, since several zones are formed from the steam inlet 

to the formation of the sub-cooled liquid [7]. 

It would be convenient to have initially the fundamental 

characteristics of each flow area as well as the most accepted 

and widespread expression in the literature for the 

determination of the average coefficient of heat transfer in it. 

 

Table 1. Validity ranges for the dominant flow condensation 

criteria in ACC systems 

 
Validity range Dominant flow criterion 

𝐽 > 1.5     ;     𝑊 < 1 Annuli 

𝐽 ≤ 1.5     ;     𝑊 < 1 Stratified-wavy 

𝐽 ≤ 1.5     ;     𝑊 ≥ 1 Intermittent 

𝐽 > 1.5     ;     𝑊 ≥ 1 Burbles 

 

Stratified-wavyflow: when the steam has a medium or low 

velocity, the convective heat transfer in the stratified liquid 

that is stored in the bottom of the tube may not be 

negligible;secondly, the axial steam flow may interfere in the 

speed and heat transfer of the film around the tube wall. In the 

work [8] this zone was studied in detail, being further reported 

that the stratified-corrugated flow regime is present inside a 

tube when it is fulfilled that smkgG 2500 , smV 5.0  
and 

20* Fr . 

The term *Fr is the modified Froude number, which is given 

by [9]: 
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In Equation (4) the Reynolds number for the liquid state ReL 

and the Galileo number Gaare determined by the following 

expressions 
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Finally the numerical value of the constants A and B present 

in the expression (4) are dependent on the Reynolds number 

for the liquid state ReL. This dependence is shown in table 2. 

 

Table 2. Values of constants A and B in equation (4) 

 
Applicability range A B 

1250Re L
 0.025 1.59 

1250Re L
 1.26 1.04 

 

The average heat transfer coefficient in this area is 

dependent on three factors, which are: 

1- Heat transfer coefficient for the steam portion 
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2- Sweeping angle of the steam portion (see figure 1) 
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Figure 1. Sweeping angle of the steam portion 

 

3- Heat transfer coefficient for the liquid portion 
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Numerical value of the constants C and D present in the 

expression (9) are shown in table 3. 
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Table 3. Values of constants C and D in equation (9) 
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The results obtained with the use of equations (7), (8) and 

(9) are combined to obtain the total heat transfer coefficient by 

the following expression [10]: 

 

FP NuNuNu 







−+=



1           (10) 

 

Expression (10) is is correlated with 383 experimental 

available, finding that it is adjusted with an average error of 

15% in the 79.4% experimental data available. 

Annuli flow: This type of flow occurs when the speed of the 

steam is high, so that the gravitational effects can be ignored, 

while the condensate is deposited in a thin annular layer 

around the tube wall, without the presence of stratification. A 

significant part of most condensers operates under the 

conditions of this flow regime. 

Of all the known models, the Chato’s equation has the 

greatest acceptance and use in the ACC systems that operate 

in the annular zone. This is given by: 
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In this zone, the laminar flow models predict low values of 

the average heat transfer coefficient, so turbulent models 

should be used in this case. Chato’s model (11) is expressed in 

function of the local number of Nusselt, therefore they must be 

integrated over the entire length of the tube in function of 

finding the average coefficient of heat transfer, so that [11-13]: 
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            (12) 

 

A drawback in equation (12) lies in the fact that the 

dependence of the steam quality xon the axial positionzmust 

be known. This is usually solved by subdividing the total 

length into a number of sub-elements of length∆z from the 

beginning of the condensate process, i.e. from inlet to outlet of 

the tube, using the local coefficient of heat transfer for each 

sub-element (normally 4 elements are taken for achieve a 

medium precision). Assuming that the steam quality varies 

linearly, which unfortunately does not happen in many cases, 

then the heat transfer coefficient can be determined 

approximately by taking the steam quality as x=0.5 in the 

expressions for the determination of the local heat transfer 

coefficient. 

An approximate solution for this problem was proposed by 

Mishra [14], who reports from a total of 813 measurements 

made in the laboratory, that the behavior of the variation of the 

quality of the steam presents a parabolic behavior whenever it 

is fulfilled in the tube entry that x < 0.95. This curve has a 

average deviation of 15%., being described by the following 

expression: 
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Intermittent flow: It occurs during condensation in tubes 

when the steam velocity is too low, (less than 0.5 m / s) flow 

can be dominated by gravitational effects, and then forces and 

stratification of the condensate can occur, that is, the 

condensate forms a thin film in the wall of the upper portion 

of the tube and drains by the periphery of this by the effect of 

gravitational forces towards the bottom of the tube where it 

joins the axially flowing condensate due to the shear stress of 

the fluid stream. 

In the known literature there are not many works on this 

type of condensation criterion, and in all cases the most 

recommended expression is that obtained by Shah, which is 

given by [15-16]: 
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The expression (14) correlates moderately with available 

experimental data, since in a total 274 test an average deviation 

of 28% was found in 80.1% of the samples. 

Burbles Flow: This regime of condensate flow appears 

when inside the tube and most of its content is subcooled liquid. 

However there are still individual bubbles, which collapse and 

are controlled both by the inertia of the liquid and by heat 

transfer. Depending fundamentally on the degree of sub 

cooling of the liquid. One of the most well-known and 

recommended expressions for this type of flow is the Jaster-

Kosky equation, which is given by [18-20]: 
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Expression (15) correlates moderately with available 

experimental data, because in 104 tests an average deviation 

of 35% was found in 78.1% of the samples [21-24]. 

 

2.2 Experimental validation of a single model for 

condensation in ACC systems 

 

As was shown in the previous section, the study of the 

process of heat transfer by condensation in ACC systems 

becomes complex due to the number of elements to be 

considered, as well as the high number of expressions involved 

in the study. 

It would be reasonable to have a single expression that 

allows to evaluate the heat transfer coefficient in any of the 

zones and whose results are close to the precision environment 

obtained with the use of the current methods, which were not 

developed for the exclusive use in ACC systems. Main reason 

for the failure in many cases of the methods available today. 
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Access to an appreciable group of available experimental 

data is taken as a starting point for the present study. 

The correlation of the available experimental quantities allows 

having a unique function for the evaluation of condensation 

heat transfer coefficient, which responds to the following 

expression [25-29]:  

( ) 
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where:  

 

( ) 026.125.095.09.0 1 +=→ xLnCxfor         (18) 

 

( ) 972.08.0195.0 2 +−=→ xLnCxfor           (19) 

 

The experimental data used in the generalization and 

development of the expression (16) and (17) are provided in 

table 4. Figure 2 shows the correlation of experimental data. 

In the y-axis is plotted the decimal  logarithm of the quotient 

between film coefficients calculated with the use of equations 

(16) and (17) while the Shah parameter is plotted along the x-

axis, which is given by 
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Figure 2. Comparison of condensing data in horizontal tubes 

with the proposed correlation, Equation (20) 

 

 

3. TRAWL ANALYSIS CAUSED BY HIGH VAPOR 

VELOCITIES. 

  

The expressions given above are valid only if the steam drag 

is negligible or insignificant. This assumption is appropriate in 

the ACC when the steam velocity does not exceed 50 m/s, but 

already for higher speeds of the steam flow the effect of the 

drag on the liquid film cannot be ignored. 

To take into account the effect of the drag on the liquid film, 

it is necessary to include the influence of shear stress on the 

surface of the liquid, that is: 

 

2

2

EVW
S

VC 
 =             (21) 

Two apparently appropriate expressions could be the 

Blasius solutions for the laminar boundary layer and the 

boundary layer turbulent. However there is an additional 

problem, and that is that these two expressions are only valid 

for a waterproof wall, while the surface the liquid has a normal 

component of speed due to condensation. In many texts of 

fluid mechanics it would be said that in this case there is 

presence of suction on the surface. In typical condensation 

problems the suction speed of the suction is relatively large 

and causes the thickness of the boundary layer to become 

almost constant very close to the initial edge, and the steam 

velocity is, in essence, only a function of VE 

This can be partially solved if the model elaborated by 

Couette for laminar flow is used, it can be used to determine 

the shear forces acting on a boundary layer subject to a strong 

suction effort (see figure 3). 

 

 
 

Figure 3. Model problem and elementary volumes employed 

 

 
 

Figure 4. Application of the model to vertical and inclined 

tubes data reported by several authors 

 

After an appreciable group of mathematical 

transformations, we arrive at a conclusive expression that 

allows us to determine the coefficient of transfer of lime by 

condensation in air-cooled systems when the effect of the 

steam drag on the surface of the liquid is taken into account. 

This expression is described by [11]: 
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Therefore, when the steam velocity in an ACC system is 

higher than 40 m/s, it is necessary to establish a product 

between the results obtained by using equation (16) and (17) 

with Equation (22), to obtain the heat transfer coefficient [31-

34]. 

Experimental 𝑁𝑢𝐸  and calculated Nusselt numbers 𝑁𝑢𝑇 , 

obtained by means of the present model, are compared in the 

following diagrams. Figures 4 show the results relative to the 

vertical and inclined tubes, while in the figure 5 show 

horizontal tubes.  

 

Table 4. Summary of the experimental quantities used 

 

 
 

Figure 5. Application of the model to horizontal tubes data 

reported by several authors 

 

 

4.CONCLUSIONS 
 

A new model has been developed that unites in a unitary 

procedure the tedious established procedures for the 

determination of the average coefficient of heat transfer by 

means of the dominant flow criterion techniques. The new 

proposal includes the effect of steam drag when it exceeds the 

critical speed inside the ACC, and the results obtained with its 

use compute an average error of 22% in 88.7% of the available 

samples. The results obtained agree with the initial criterion 

that supported the investigation, considering that the 

objectives of the same were fulfilled. The new method is also 

valid for a steam quality located between 0.9 and one, for 

steam flows between 3 and 590 kg/(m2.s-1), values for the 

Reynolds number for the liquid portion between 660 and 58 

540 and the Reynolds number for the vapor portion located 

between 1 320 and 333 120, internal equivalent diameters of 

the tubes comprised between 7.4 to 49 mm. 
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NOMENCLATURE 

 

G Mass flux, kg. m-2.s-1 

m Steam rate, kg.s-1 

Pback Steam pressure, kPa 

Cp Specific heat, J. kg-1. K-1 

d Inner equivalent tube diameter, m 

g gravitational acceleration, m.s-2 

Re Reynolds number 

Nu Nusselt number  

Ga Galileo Number 

Ja Jakob Number 

Pr Prandtl number  

PrL Prandtl number for single-phase 

P Fluid pressure, kg. m-1.s-2 

x Steam quality 

( )LVr
 

Latent heat of vaporization, J. kg-1. K-1 

Tsat Saturation temperature, 0C 

TP Wall temperature, 0C 

N Numbers of experimental points. 

V Steam speed, m.s-1 

 

Greek symbols 

 

 

 two-phase heat transfer coefficient, kg.m-2.s-3.K-1 

  Mean heat transfer coefficient, kg.m-2.s-3.K-1 

  
Thickness film, m 

T Two-phase heat transfer coefficient, kg.m-2.s-3.K-1 

θmed Inscript pipe angle,  

µ Dynamic viscosity, kg. m-1.s-1 

µL Liquid dynamic viscosity, kg. m-1.s-1 

µV Steam dynamic viscosity, kg. m-1.s-1 

ρL Density of liquid, kg.m-3 

ρV Density of vapor, kg.m-3 

λ Fluid thermal conductivity, W.m-1. K-1 

νL Liquid kinematic viscosity, m2.s-1 

∆T Temperature difference across the condensate film, K 

 

Subscripts 

 

 

Eq. Equation 
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