Higher-Order Derivatives of Differential Subordination of Multivalent Functions

Higher-Order Derivatives of Differential Subordination of Multivalent Functions

Mustafa I. Hameed* Shaheed Jameel Al-Dulaimi Hussaini Joshua

Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi 31001, Iraq

Department of Computer Science, Al- Maarif University College, Ramadi 31001, Iraq

Department of Mathematical Sciences, Faculty of Science, University of Maiduguri, Borno 600004, Nigeria

Corresponding Author Email: 
mustafa8095@uoanbar.edu.iq
Page: 
1566-1572
|
DOI: 
https://doi.org/10.18280/mmep.100508
Received: 
10 March 2023
|
Revised: 
15 May 2023
|
Accepted: 
28 May 2023
|
Available online: 
27 October 2023
| Citation

© 2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

The research into theory for analytic univalent as well as multivalent functions is an ancient subject for mathematics, especially in complex analysis, which has attracted a great number for scholars due to utter elegance of the its geometrical characteristics as well as numerous research opportunities. The study of univalent functions is one of most important areas of complex analysis for only one and many variables. Researchers have been interested in the traditional study of this subject since at least 1907. During this time until now many researchers in the field of complex analysis, including as Euler, Gauss, Riemann, Cauchy, and many others, have developed. Geometric function theory is a combination or interplay of geometry and analysis. The main goal of this article is to investigate the principle for dependence as well as add an additional subset for polyvalent functions with a different operator that is related to derivatives of higher order. As a result, the findings were important in terms of various geometric properties, including coefficient estimation, distortion as well as growth borders, radii for starlikeness, convexity, as well as close-to-convexity.

Keywords: 

differential subordination, differential superordinɑtion, multivalent function, convex function, Stɑrlike function, higher-order derivatives, Hɑdamɑrd product

1. Introduction

The main driving force behind this line of believed is the renowned conjecture known to be the Bieberbach conjecture as well as coefficient problem, and these offered enormous scope over development about 1916 until a positive settlement within 1985 through De Branges, during which innumerable results derived from this problem emerged. Since then, Geometric Function Theory is being studied separately. Geometric Function Theory is a popular topic. Despite this, it continues to find new uses for a variety of fields range for fields, including modern mathematical physics, engineering, medical, as well as others, more traditional physics topics like fluid dynamics, nonlinear integrable systems theory, as well as others partial differential equation theory. In complex analysis, a geometric function is a function whose range describes specific geometries. 

The research aim is ability to study a new class for multivalent functions established through the new linear operator and start investigating a new linear operator by using Hadamard product of the basic higher-order derivatives of differential subordination of multivalent functions. Using generalized hypergeometric function and the properties of the generalized derivative operator will have obtaining A number of findings over higher-order derivatives about differential subordination within an open unit disk are presented.

We used the properties of the generalized derivative operator, derive certain subordination and superordination properties, as well as examine the characteristics about variations subordination for analytic univalent functions over an open unit the disc. Furthermore, its findings have shedding illumination on geometric features that include coefficient inequality and Hadamard product characteristics. Certain fascinating findings to feed higher-order derivatives, variations subordination, as well as superordination about analytic univalent functions were recently installed. Following that, employing the convolution formed by two linear operators, specific findings for differential subordination comprising linear operators have been presented. Multiple findings to feed higher-order differential subordination within the open unit disk employing a generalized hypergeometric function are being discussed employing the convolution operator.

Allow $g(w)$ to serve as an anaytic function an open unit $\operatorname{disc} \mathcal{L}=\{w \in \mathbb{C}:|w|<1\}$. In the event the equation $v=$ $g(w)$ possesses fewer compared to $p$-solutions through $\mathcal{L}$, then $g(w)$ is said to be $p$-valent through $\mathcal{L}$. 5. "The class of all analytic $p$-valent functions is denoted by $\mathcal{A}_p$, where $g$ is expressed of the forms"

$g(w)=w^p-\sum_{l=p+1}^{\infty} a_\iota w^\iota, \quad(w \in \mathcal{L})$            (1)

and $p, \iota \in \mathbb{N}=\{1,2,3, \ldots\}$. The Hadamard product from two functions in $\mathcal{A}_p$,  which means

$k(w)=w^p-\sum_{\iota=p+1}^{\infty} c_\iota w^\iota, \quad(w \in \mathcal{L})$        (2)

is provided by

$g(w) * k(w)=w^p-\sum_{l=p+1}^{\infty} a_\iota c_\iota w^\iota . \quad(w \in \mathcal{L})$              (3)

The theory about harmonic as well as analytic [1] univalent functions for (bi or just multi-types) [2-6] constitutes a few about the most significant ideas associated with complex analysis. Thus, a few unique elements are described within this theory to establish novel interesting certain groups or just sub-classes [7-9] for special functions associated to multiple operators [10-14] that could have maximized as well as maximized a number real problem via a certain functional relative that results via the theory of conventional functions by way of a few characteristics for complex functions [15, 16].

Especially, this area of study has piqued the interest for a number of applied science researchers in a variety of situations. Furthermore, these principles play an important role in determining the exact solution for mathematical modeling, especially in the analysis for physical, chemical, as well as building domains [17-19].

2. Basic Properties

We allow $g(w)$ as well as $k(w)$ be analytic function in $\mathcal{L}$. The function $g(w)$ is said to be subordinate to a function $k(w)$ or $k(w)$ is said to be superordinate to $g(w)$, if and only if there exists a Schwarz function $z(w)$ analytic in $\mathcal{L}$, with $z(0)=0$ and $|z(w)|<1,(w \in \mathcal{L})$, such that,

$g(w)=k(z(w))$

written as

$g \prec k \operatorname{or} g(w) \prec k(w),(w \in \mathcal{L})$

Furthermore, if the function $k$ is univalent in $\mathcal{L}$, then we get the following equivalence $g(w)<k(w)$ if and only if $g(0)=k(0)$ and $g(\mathcal{L}) \subset k(\mathcal{L})$ [20-22]. A function $g(w)$ is called starlike (convex) in $\mathcal{L}$ if satisfies the following condition:

$\left\{\Re e\left\{\frac{w g^{\prime}(w)}{g(w)}\right\}>0, g(w) \neq 0\right\},\left\{\Re e\left\{1+\frac{z g^{\prime \prime}(w)}{g^{\prime}(w)}\right\}>0\right\}$

respectively [20]. The linear multiplier fractional q-differintegral operator $\mathcal{L}_{\gamma, \tau}^{\alpha, n}$ introduced by studies [15, 23] defined as follows:

$\begin{gathered}\mathcal{L}_{\gamma, \tau}^{\alpha, 0} \mathcal{g}(w)=\mathcal{g}(w), \\ \mathcal{L}_{\gamma, \tau}^{\alpha, 1} \mathcal{g}(w)=(1-\tau) \mathcal{L}_{\gamma, \tau}^\alpha \mathcal{g}(w)+ \tau w\left(\mathcal{L}_{\gamma, \tau}^\alpha \mathcal{g}(w)\right)^{\prime},(\tau \geq 0), \\ \mathcal{L}_{\gamma, \tau}^{\alpha, 2} \mathcal{g}(w)=\mathcal{L}_{\gamma, \tau}^{\alpha, 1}\left(\mathcal{L}_{\gamma, \tau}^{\alpha, 1} \mathcal{g}(w)\right), \\ \mathcal{L}_{\gamma, \tau}^{\alpha, n} \mathcal{g}(w)=\mathcal{L}_{\gamma, \tau}^{\alpha, 1} \mathcal{g}\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n-1} g(w)\right),(n \in N)\end{gathered}$        (4)

and with the following form:

$g(w)=w-\sum_{\imath=p+1}^{\infty}\left|a_\iota\right| w^\iota$              (5)

then by Eqs. (4) as well as (5), we get:

$\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)=w^p-\sum_{\iota=p+1}^{\infty}\left(\frac{\Gamma_\gamma(2-\alpha) \Gamma_\gamma(\iota+1)}{\Gamma_\gamma(2) \Gamma_\gamma(\iota+1-\alpha)}\left[1-\tau+[\iota]_\gamma \tau\right]\right)^\alpha\left|a_\iota\right| w^\iota$           (6)

where,

$\mu_\iota^\alpha=\left(\frac{\Gamma_\gamma(2-\alpha) \Gamma_\gamma(\iota+1)}{\Gamma_\gamma(2) \Gamma_\gamma(\iota+1-\alpha)}\left[1-\tau+[\iota]_\gamma \tau\right]\right)^\alpha$             (7)

By Eqs. (6)-(7), then we have:

$\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)=w^p-\sum_{\iota=p+1}^{\infty} \mu_\iota^\alpha\left|a_\iota\right| w^\iota$

Note that, if we put $\alpha=0$ the operator $\mathcal{L}_{\gamma, \tau}^{\alpha, n}$ decreases into the operator studied through Al-Oboudi [24] as well as for $\alpha=$ $0, \tau=1$, we as a species get the operator introduced through Salagean [25]. As a higher order derivatives q-differintegral operator is described below:

$\begin{gathered}g^{(1)}(w)=p w^{p-1}-\sum_{\imath=p+1}^{\infty} \iota \mu_\iota^\alpha\left|a_\iota\right| w^{\iota-1} \\ g^{(k)}(w)=\frac{p !}{(p-k) !} w^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k) !} \mu_\iota^\alpha\left|a_\iota\right| w^{\iota-k}\end{gathered}$                    (8)

where, $p \geq k, p \in \mathbb{N}$ and $k \in \mathbb{N} \cup\{0\}$.

Definition 2.1 When a function $g(w)$ compared to $\mathcal{A}_p$ is within the class $K(\alpha, \lambda, n, \gamma, \tau, D, E)$, if it satisfies the following:

$1+\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1}}{\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)\right)^k}-\beta \prec \frac{1+D w}{1+E w}$                (9)

$(-1 \leq E<D \leq 1,0 \leq \beta<1)$, and let,

$B(w)=1+\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1}}{\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)\right)^k}-\beta \prec \frac{1+D w}{1+E w}$                (10)

then we get:

$B(w)=\frac{1+D Y(w)}{1+E Y(w)}$,

where, $Y(w)$ is Schwarz function [26, 27], thus:

$\begin{gathered}B(w)(1+E Y(w))=1+D Y(w) \\ Y(w)=\frac{B(w)-1}{D-E B(w)}, \text { and }|Y(w)|<1\end{gathered}$

then, we obtain,

$\left|\frac{\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} \mathcal{g}(w)\right)^{k+1}}{\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} \mathcal{g}(w)\right)^k}-\beta}{D-E\left(1+\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} \mathcal{g}(w)\right)^{k+1}}{\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} \mathcal{g}(w)\right)^k}-\beta\right)}\right|<1,(w \in \mathcal{L})$             (11)

3. Main Results

This section investigates and demonstrates the necessary conditions for differential subordination for the class $K(\alpha, \lambda, n, \gamma, \tau, D, E)$. A few fascinating findings to feed differential subordination as well as superordination about analytic univalent functions were recently installed. subsequently employing the convolution formed by two linear operators, specific outcomes about differential subordination including linear operators were presented.

Theorem 3.1 When a function $g(w) \in \mathcal{A}_p$ about a given type (1) falls into the class $K(\alpha, \lambda, n, \gamma, \tau, D, E)$ if it satisfies the following condition:

$\begin{aligned} \sum_{\iota=p+1}^{\infty}((1-D)+( & 1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha\left|a_\iota\right| \\ & \leq((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]\end{aligned}$       (12)

for $\alpha, \lambda, n \in \mathbb{N}_0, \tau \leq n+1, \gamma \geq 0$ and $-1 \leq E<D \leq 1$.

Proof. If $g(w) \in K(\alpha, \lambda, n, \gamma, \tau, D, E)$, then by Eq. (11), we obtain:

$\left|\frac{\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1}}{\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)\right)^k}-\beta}{D-E\left(1+\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1}}{\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)\right)^k}-\beta\right)}\right|<1$

$\left|\frac{w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1}-\beta\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)\right)^k}{(D-(1-\beta) E)\left(\mathcal{L}_{\gamma, \tau}^{\alpha, n} g(w)\right)^k-w E\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1}}\right|<1$

$\left|\frac{w\left(\frac{p !}{(p-k-1) !} w^{p-k-1}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k-1) !} \mu_\iota^\alpha a_\iota w^{\iota-k-1}\right)}{(D-(1-\beta) E)\left(\frac{p !}{(p-k) !} w^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k) !} \mu_\iota^\alpha a_\iota w^{\iota-k}\right)}\right|-$

$\left|\frac{\beta\left(\frac{p !}{(p-k) !} w^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k) !} \mu_\iota^\alpha a_\iota w^{\iota-k}\right)}{w E\left(\frac{p !}{(p-k-1) !} w^{p-k-1}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k-1) !} \mu_\iota^\alpha a_\iota w^{\iota-k-1}\right)}\right|<1$

Hence, when $w \rightarrow 1$, we obtain:

$\begin{aligned} & (1+\beta)\left(\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right)+\sum_{\iota=p+1}^{\infty}\left(\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right)(\beta+1) \mu_\iota^\alpha\left|a_\iota\right| \leq \\ & (D+\beta E)\left(\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right)+\sum_{\iota=p+1}^{\infty}\left(\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right)(D+\beta E) \mu_\iota^\alpha\left|a_\iota\right| .\end{aligned}$

Then,

$\sum_{\iota=p+1}^{\infty}((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha\left|a_\iota\right| \\ \leq((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]$

Thus, $g(w) \in K(\alpha, \lambda, n, \gamma, \tau, D, E)$. The evidence is therefore complete.

The following result establishes the associated class's distortion and growth theorem [12].

Theorem 3.2 If $g(w)$ about a given type (1) falls into the $\operatorname{class} K(\alpha, \lambda, n, \gamma, \tau, D, E)$, then for $|w|=r<1$, we have,

$|w|^p-\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}\right)|w|^{p+1} \leq|g(w)|$            (13)

and

$|g(w)| \leq|w|^p+\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}\right)|w|^{p+1}$              (14)

The equality in Eqs. (13)-(14) is achieved to feed the function g(w) provided by:

$g(w)=w^p-\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(l-k) !}-\frac{\iota !}{(l-k-1) !}\right] \mu_\iota^\alpha}\right) w^{p+1}$.                (15)

Proof. Via Theorem 3.1, we have,

$\sum_{\iota=p+1}^{\infty}((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha\left|a_\iota\right| \\ \leq((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]$.

Then, for $|w|=r<1$, we get,

$|g(w)| \geq r^p-\sum_{l=p+1}^{\infty}\left|a_\iota\right| r^{p+1} \geq r^p-r^{p+1} \sum_{l=p+1}^{\infty}\left|a_\iota\right| \\ \geq r^p-\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{l !}{(l-k) !}-\frac{l !}{(l-k-1) !}\right] \mu_l^\alpha}\right) r^{p+1}$.

also,

$|\mathcal{g}(w)| \leq r^p+\sum_{\iota=p+1}^{\infty}\left|a_\iota\right| r^{p+1} \leq r^p+r^{p+1} \sum_{\iota=p+1}^{\infty}\left|a_\iota\right|  \\ \leq r^p+\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}\right) r^{p+1}$.

The evidence is therefore complete.

Growth theorem for the considered class $K(\alpha, \lambda, n, \gamma, \tau, D, E)$ is given by.

Theorem 3.3 If $g(w)$ about a given type (1) falls into the class $K(\alpha, \lambda, n, \gamma, \tau, D, E)$, then for $|w|=r<1$, we have,

$p r^{p-1}-\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !(p-k-1)}{(p-k-m-1) !}-\frac{p !(p-k)}{(p-k-m) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !(l-k)}{(l-k-m) !}-\frac{\iota !(\iota-k-1)}{(\iota-k-m-1) !}\right] \mu_\iota^\alpha}\right) r^p \leq\left|g^{\prime}(w)\right|$,                         (16)

and

$\left|g^{\prime}(w)\right| \leq p r^{p-1}+\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !(p-k-1)}{(p-k-m-1) !}-\frac{p !(p-k)}{(p-k-m) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{l !(l-k)}{(l-k-m) !}-\frac{l !(l-k-1)}{(l-k-m-1) !}\right] \mu_\iota^\alpha}\right) r^p$.                  (17)

The equality within Eqs. (16)-(17) is achieved to feed the function g(w) provided by,

$g^{\prime}(w)=p w^{p-1}-\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !(p-k-1)}{(p-k-m-1) !}-\frac{p !(p-k)}{(p-k-m) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !(\iota-k)}{(\iota-k-m) !}-\frac{\iota !(\iota-k-1)}{(\iota-k-m-1) !}\right] \mu_t^\alpha}\right) w^p$.                  (18)

Proof. Since

$\left|g^{\prime}(w)\right| \leq p|w|^{p-1}-\sum_{\iota=p+1}^{\infty} \iota\left|a_\iota\right||w|^{\iota-1}$.

Form Theorem 3.1, we obtain,

$\sum_{\iota=p+1}^{\infty}((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha\left|a_\iota\right| \\ \leq((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]$.

Then, for $|w|=r<1$, we obtain,

$\left|g^{\prime}(w)\right| \geq p r^{p-1}-r^p \sum_{\iota=p+1}^{\infty} \iota\left|a_\iota\right| \geq p r^{p-1}-\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !(p-k-1)}{(p-k-m-1) !}-\frac{p !(p-k)}{(p-k-m) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !(l-k)}{(\iota-k-m) !}-\frac{\iota !(\iota-k-1)}{(\iota-k-m-1) !}\right] \mu_\iota^\alpha}\right) r^p$

We can get in a similar way,

$\left|\mathcal{g}^{\prime}(w)\right| \leq p r^{p-1}+r^p \sum_{\iota=p+1}^{\infty} \iota\left|a_\iota\right| \leq p r^{p-1}+\left(\frac{((D-1)+(E-1) \beta)\left[\frac{p !(p-k-1)}{(p-k-m-1) !}-\frac{p !(p-k)}{(p-k-m) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !(\iota-k)}{(\iota-k-m) !}-\frac{\iota !(\iota-k-1)}{(\iota-k-m-1) !}\right] \mu_\iota^\alpha}\right) r^p$

So, we have finished the proof of the theorem.

The following result shows that, based on the study [2], the function $g(w)$ meets the radii about starlikeness, convexity, as well as close-to-convexity to convexity.

Theorem 3.4 Allow $g(w) \in K(\alpha, \lambda, n, \gamma, \tau, D, E)$. Then the function $g$ is of starlikeness order $\sigma$ in $|w|<r_1$, where,

$r_1(\alpha, \lambda, n, \gamma, \tau, D, E, \sigma)=\inf \left\{\frac{(p+\sigma-2)}{(\iota+\sigma-2)}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\right\}^{\frac{1}{\iota-p}}$

Proof. We must prove that,

$\left|\frac{w g^{\prime}(w)}{g(w)}\right| \leq 1-\sigma, \frac{(p-1)|w|^p-\sum_{l=p+1}^{\infty}(l-1)\left|a_l\right|\left|w^l\right|}{|w|^p-\sum_{l=p+1}^{\infty}\left|a_l\right|\left|w^l\right|} \leq 1-\sigma$.               (19)

From Eq. (19) holds if,

$(p-1)|w|^p-\sum_{\iota=p+1}^{\infty}(\iota-1)\left|a_\iota\right|\left|w^\iota\right| \leq(1-\sigma)\left(|w|^p-\sum_{\iota=p+1}^{\infty}\left|a_\iota\right|\left|w^\iota\right|\right)$.

Then,

$\sum_{l=p+1}^{\infty} \frac{(\iota+\sigma-2)}{(p+\sigma-2)}\left|a_l\right||w|^{\iota-p} \leq 1$.               (20)

From Theorem 3.1, we obtain,

$\sum_{\iota=p+1}^{\infty}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\left|a_\iota\right| \leq 1$.                  (21)

Using Eqs. (20) and (21), we have,

$\frac{(\iota+\sigma-2)}{(p+\sigma-2)}|w|^{\iota-p} \leq\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)$     

that is,

$|w|^{\iota-p} \leq \frac{(p+\sigma-2)}{(\iota+\sigma-2)}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)$

Therefore,

$|w| \leq\left\{\frac{(p+\sigma-2)}{(\iota+\sigma-2)}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\right\}^{\frac{1}{\iota-p}}$.

The subsequent theorem demonstrates the concave shape property found in the thought about subclass functions.

Theorem 3.5 Allow $g(w) \in K(\alpha, \lambda, n, \gamma, \tau, D, E)$. Afterwards the function $g$ possesses a convex order $\sigma$ within $|w|<r_2$, where,

$r_2(\alpha, \lambda, n, \gamma, \tau, D, E, \sigma)=\inf \left\{\frac{\frac{p !}{(p-k-1) !}(p-k-\sigma+2)}{\frac{\iota !}{(\iota-k-1) !}(\iota-k-\sigma)}\right\}^{\frac{1}{\iota-p}}  \\ \times \inf \left\{\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\right\}^{\frac{1}{\iota-p}}$

Proof. We must prove that,

$\left|\frac{w h^{\prime}(w)}{h(w)}\right| \leq 1-\sigma$

where,

$\begin{gathered}h(w)=w\left(\mathcal{L}_{\gamma, \tau}^{\alpha+\lambda, n} g(w)\right)^{k+1} \text {, and } h^{(m)}(w)=\frac{p !(p-k)}{(p-k-m) !} w^{p-k-m}-\sum_{\iota=p+1}^{\infty} \frac{\iota !(l-k)}{(\iota-k-m) !} a_\iota w^{\imath-k-m} \\ \frac{\frac{p !}{(p-k-1) !}(p-k-1)|w|^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k-1) !}(\iota-k-1)\left|a_\iota \| w\right|^{\iota-k}}{\frac{p !}{(p-k-1) !}|w|^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k-1) !}\left|a_\iota\right||w|^{\iota-k}} \leq 1-\sigma\end{gathered}$          (22)

From Eq. (22) holds if,

$\frac{p !}{(p-k-1) !}(p-k-1)|w|^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k-1) !}(\iota-k-1)\left|a_\iota\right||w|^{\iota-k}  \\ \leq(1-\sigma)\left(\frac{p !}{(p-k-1) !}|w|^{p-k}-\sum_{\iota=p+1}^{\infty} \frac{\iota !}{(\iota-k-1) !}\left|a_\iota\right||w|^{\imath-k}\right)$       

Then,

$\sum_{\iota=p+1}^{\infty} \frac{\frac{\iota !}{(\iota-k-1) !}(\iota-k-\sigma)}{\frac{p !}{(p-k-1) !}(p-k-\sigma+2)}\left|a_\iota\right||w|^{\iota-p} \leq 1$            (23)

From Theorem 3.1, we obtain,

$\sum_{\iota=p+1}^{\infty}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\left|a_\iota\right| \leq 1$                (24)

Using Eqs. (23) and (24), we have

$\begin{aligned} & \left(\frac{\frac{\iota !}{(\iota-k-1) !}(\iota-k-\sigma)}{\frac{p !}{(p-k-1) !}(p-k-\sigma+2)}\right)|w|^{\iota-p} \leq\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right) \\ & |w|^{\iota-p} \leq\left(\frac{\frac{p !}{(p-k-1) !}(p-k-\sigma+2)}{\frac{\iota !}{(\iota-k-1) !}(\iota-k-\sigma)}\right) \times\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right) \\ & \end{aligned}$

Hence,

$|w| \leq\left\{\frac{\frac{p !}{(p-k-1) !}(p-k-\sigma+2)}{\frac{\iota !}{(\iota-k-1) !}(\iota-k-\sigma)}\right\}^{\frac{1}{l-p}} \times\left\{\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_t^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\right\}^{\frac{1}{\iota-p}}$

since a consequence, the proof has been complete.

Close-to-convexity property that characterizes the thought about subclass functions can be seen within the paragraphs that follow theorem.

Theorem 3.6 Allow $g(w) \in K(\alpha, \lambda, n, \gamma, \tau, D, E)$. Afterwards the function $g$ possesses a close-to-convex order $\sigma$ within $|w|<r_3$, where,

$r_3(\alpha, \lambda, n, \gamma, \tau, D, E, \sigma)=\inf \left\{\frac{\left(p|w|^{p-1}-(2-\sigma)\right)}{\iota|w|^{p-2}}\right\}^{\frac{1}{\iota-p}}  \\  \times \inf \left\{\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right\}^{\frac{1}{\iota-p}}\right.$

Proof. We must prove that,

$\left|g^{\prime}(w)-1\right| \leq 1-\sigma$

that is,

$\begin{gathered}\left|g^{\prime}(w)-1\right| \leq p|w|^{p-1}-\left.\sum_{\iota=p+1}^{\infty}|| a_\iota|| w\right|^{\iota-1}-1<1-\sigma \\ \left|g^{\prime}(w)-1\right| \leq p|w|^{p-1}-\sum_{\iota=p+1}^{\infty} \iota\left|a_\iota\right||w|^{\iota-1}<2-\sigma\end{gathered}$

From Theorem 3.1, we obtain,

$\sum_{\iota=p+1}^{\infty}\left|a_\iota\right| \leq \frac{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_l^\alpha}$

where, $\iota \geq p+1$, then,

$\sum_{\iota=p+1}^{\infty}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\left|a_\iota\right| \leq 1$                        (25)

Observe that Eq. (25) is true if,

$\frac{\iota|w|^{l-2-p+p}}{p|w|^{p-1}-(2-\sigma)} \leq\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)$

that is,

$|w|^{\iota-p} \leq \frac{\left(p|w|^{p-1}-(2-\sigma)\right)}{\iota|w|^{p-2}}\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)$

Hence,

$|w| \leq\left\{\frac{\left(p|w|^{p-1}-(2-\sigma)\right)}{\iota|w|^{p-2}}\right\}^{\frac{1}{\iota-p}} \times\left\{\left(\frac{((1-D)+(1-E) \beta)\left[\frac{\iota !}{(\iota-k) !}-\frac{\iota !}{(\iota-k-1) !}\right] \mu_\iota^\alpha}{((D-1)+(E-1) \beta)\left[\frac{p !}{(p-k-1) !}-\frac{p !}{(p-k) !}\right]}\right)\right\}^{\frac{1}{\iota-p}}$

since a consequence, the proof has been complete.

4. Conclusion

We've shown that higher-order derivatives of multivalent functions are correlated with subclass. There are a lot of fascinating findings about harmonic multivalent functions defined by differential operators. The investigation focused on a subclass for analytical univalent function linked to the notion differential subordination. We investigated a few differential subordination along with superordination results including a specific class defined upon the dimension for univalent meromorphic functions within the open unit disc.

Gain geometric properties such as coefficient border, coefficient disparities, distortion theorem, closing theorem, severe points, starlikeness radii, convexity, near-perfect convexity, as well as integration principles. We studied neighbourhood property by using differential subordination.

We obtained a few differential subordination leads to including a linear operator, as well as certain ones sandwich theorems. As a several convolution operators, we presented a few uses of the differential subordination notion upon subclasses about univalent functions. That was obtained some important results differential subordination and differential superordination of second order of meromorphic analytical univalent function by using linear operator. Finally, by using the convolution operator, we give some results for Second order differential subordination within the open unit disk including a general hypergeometric function.

5. Future Study

The following is a breakdown of the future study:

  • Using generalized hypergeometric function and the properties of the generalized derivative operator will have obtaining multiple findings to feed fourth order different subordination within the open unit disk

  • Can develop two novel bi-univalent function subclasses and obtain estimates for the concepts for class of functions.

  • Ability to study a new class of multivalent functions characterized by a fresh linear operator and start investigating a new linear operator by using Hadamard product of the basic hypergeometric function as well as the Mittag-Leffler function of meromorphic functions.

  References

[1] Zayed, H.M., Aouf, M.K. (2018). Subclasses of analytic functions of complex order associated with q−mittag leffler function. Journal of the Egyptian Mathematical Society, 26(2): 278-285. https://doi.org/10.21608/joems.2018.2640.1015

[2] Hayman, W. (1994). Multivalent Functions Second Edition. Printed in Great Britain of the University Press Cambridge. 

[3] Irmak, H., Lee, S., Cho, N. (1997). Some multivalently starlike functions with negative coefficients and subclass defined by using a differential operator. Kyungpook Mathematical Journal, 37(1): 43-51.

[4] Kilic, Ö.Ö. (2008). Sufficient conditions for subordination of multivalent functions. Journal of Inequalities and Applications, 2008: 374756. https://doi.org/10.1155/2008/374756

[5] Uzoamaka, A., Maslina, D., Olubunmi, A. (2020). The q-analogue of Sigmoid function in the space of univalent λ-Pseudo starlike functions. International Journal of Mathematics and Computer Science, 15(2): 621-626. 

[6] Hameed, M.I., Al-Dulaimi, S.J., Jassim, K.A. (2023). Some applications of certain subclasses of meromorphic functions defined by certain differential operators. In AIP Conference Proceedings, 2554(1): 020001. https://doi.org/10.1063/5.0103963

[7] Ali, R., Ravichandran, V., Lee, S. (2009). Subclasses of multivalent starlike and convex functions. Bulletin of the Belgian Mathematical Society - Simon Stevin, 16(3): 385-394. https://doi.org/10.36045/bbms/1251832366

[8] Elrifai, E., Darwish, H., Ahmed, A. (2012). On subordination for higher-order derivatives of multivalent functions associated with the generalized Srivastava-attiya operator. Demonstration Mathematica, XLV(1): 40-49. https://doi.org/10.1515/dema-2013-0363

[9] Hameed, M.I., Shihab, B.N., Jassim, K.A. (2022). Some properties of subclass of P-valent function with new generalized operator. In AIP Conference Proceedings, 2394(1): 070006. https://doi.org/10.1063/5.0120913

[10] Abelman, S., Selvakumaran, K.A., M.M. Rashidi, M.M., Purohit, S.D. (2017). Subordination conditions for a class of non-bazilevic type defined by using fractional q-Calculus operator. Facta Universitatis Series Mathematics and Informatics, 32(2): 255-267. https://doi.org/10.22190/FUMI1702255A

[11] Hameed, M.I., Shihab, B.N. (2022). Some classes of univalent function with negative coefficients. Journal of Physics: Conference Series, 2322(1): 012048. https://doi.org/10.1088/1742-6596/2322/1/012048

[12] Hameed, M.I., Shihab, B.N. (2022). On differential subordination and superordination for univalent function involving new operator. Iraqi Journal for Computer Science and Mathematics, 3(1): 22-31.‏ https://doi.org/10.52866/ijcsm.2022.01.01.003

[13] Hameed, M.I., brahim, I. (2019). Some applications on subclasses of analytic functions involving linear operator. In 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), Kirkuk, Iraq. https://doi.org/10.1109/ICCISTA.2019.8830665

[14] Irmak, H., Cho, N. (2007). A differential operator and its application to certain multivalently analytic functions. Hacettepe Journal of Mathematics and Statistics, 36(1): 1-6. 

[15] Ramachandran, C., Dhanalakshmi, K., Vanitha, L. (2016). Certain aspects of univalent function with negative coefficients defined by Bessel function. Brazilian Archives of Biology and Technology, 59(2): 1-14. https://doi.org/10.1590/1678-4324-2016161044

[16] Hameed, M.I., Ali, M.H. (2021). Some classes of analytic functions for the third Hankel determinant. Journal of Physics: Conference Series, 1963(1): 012080. https://doi.org/10.1088/1742-6596/1963/1/012080

[17] Hameed, M.I., Ozel, C., Al-Fayadh, A., Juma, A.R.S. (2019). Study of certain subclasses of analytic functions involving convolution operator. AIP Conference Proceedings, 2096(1): 020014. https://doi.org/10.1063/1.5097811

[18] Hameed, M.I., Shihab, B.N., Jassim, K.A. (2022). An application of subclasses of Goodman-Salagean-type harmonic univalent functions involving hypergeometric function. AIP Conference Proceedings, 2398(1): 060012. https://doi.org/10.1063/5.0093392

[19]  Ruscheweyh, S. (1981). Neighborhoods of univalent functions. Proceedings of the American Mathematical Society, 81(4): 521-527. https://doi.org/10.2307/2044151

[20] Oros, G.I., Oros, G. (2009). Strong differential subordination. Turkish Journal of Mathematics, 33(3): 249-257. https://doi.org/10.3906/mat-0804-16

[21] Miller, S.S., Mocanu, P.T. (2000). Differential Subordinations, Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York.

[22] Hameed, M.I., Shihab, B.N., Jassim, K.A. (2021). Certain geometric properties of meromorphic functions defined by a new linear differential operator. Journal of Physics: Conference Series, 1999(1): 012090. https://doi.org/10.1088/1742-6596/1999/1/012090

[23] Hameed, M.I., Shihab, B.N. (2022). Several subclasses of r-fold symmetric bi-univalent functions possess coefficient bounds. Iraqi Journal of Science, 63(12): 5438-5446.‏ https://doi.org/10.24996/ijs.2022.63.12.29

[24] Al-Oboudi, F.M. (2004). On univalent functions defined by a generalized Sălăgean operator. International Journal of Mathematics and Mathematical Science, 2004: 172525. https://doi.org/10.1155/S0161171204108090

[25] Salagean, G.S. (1981). Subclasses of univalent functions. In: Cazacu, C.A., Boboc, N., Jurchescu, M., Suciu, I. (eds.) Complex Analysis - Fifth Romanian-Finnish Seminar. Lecture Notes in Mathematics, vol. 1013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066543

[26] Hameed, M.I., Ali, M.A., Shihab, B.N. (2022). A certain subclass of meromorphically multivalent Q-starlike functions involving higher-order Q-derivatives. Iraqi Journal of Science, 63(1): 251-258.‏ https://doi.org/10.24996/ijs.2022.63.1.26

[27] Ravichandran, V., Ahuja, O., Ali, R. (2014). Analytic and harmonic univalent functions. Analytic and Harmonic Univalent Functions, 2014: 578214. ttps://doi.org/10.1155/2014/578214