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 A System-on-Chip (SoC) is an integrated circuit that combines various electronic components 

in a single die. The SoC components mostly involve user-defined logic, embedded memories, 

analog, digital and mixed-signal blocks. The testing of an SoC for manufacturing defects is an 

important task due to IC design complexity, further, it also affects the final cost of the chip. 

Due to the high complexity involved in SoC test scheduling, various techniques were suggested 

to reduce the testing time. This paper introduces a novel SoC test scheduling technique based 

on a Modified Ant Colony Optimization (MACO) algorithm. The testing is performed on the 

benchmark circuits of ITC’02. The experiments performed on d695 and p22810 SoC 

benchmark circuits. The results show that the MACO algorithm can achieve reduced test time 

compared to the ACO algorithm. When compared with ACO, the proposed algorithm MACO 

reduces the testing time by 47% and 10% for d695 and p22810 SoC benchmark circuits 

respectively.  
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1. INTRODUCTION 

 

Currently, Integrated Circuits (ICs) are embedded in a 

variety of products and systems. IC’s comprises of a huge 

number of transistors and hardware modules. Millions of 

transistors and hardware modules can be manufactured on a 

single chip called a System on Chip (SoC). An SoC chip 

consists of peripheral devices, processors and controllers. The 

complexity of ICs is a major challenge in SoC design. 

Intellectual Property (IP) cores used for SoC designs are 

embedded in system chip and it is impossible to access it 

directly. Testing cost highly depends on the testing time which 

increases when the system becomes more complex. After 

manufacturing to test individual cores on system-level Test 

Access Mechanism (TAM) is necessary. The major parts in 

test access architecture of SoC are TAM and Test wrapper. 

These components have an impact on the vector memory 

required on Automatic Test Equipment (ATE). The wrapper is 

a thin shell surrounding the core acting as an interface between 

the core and TAM [1-3].  

The wrapper is linked to core inputs, outputs and scan 

chains outside the core. The TAM wires are used to apply test 

vectors to the wrapper. ATE stores the test vectors which are 

to be applied to SoCs and are applied through TAM wires. The 

cores are scheduled for testing in order to obtain minimum test 

time. Due to the increase in SoC size, Test Application Time 

(TAT), test data volume and test resource usage also increase. 

To reduce TAT, SoC test resources should be designed and 

used effectively. The main aim is to reduce the test time of 

SoCs by efficient scheduling techniques. In this research paper, 

a Modified Ant Colony Optimization (ACO) technique is used 

to optimize the testing time for various ITC’02 SoC 

benchmark circuits. The results show that the Modified ACO 

technique provides better results compared to other techniques. 

The ITC'02 SoC Test Benchmark circuits are a set of 

benchmark circuits presented at the IEEE International Test 

Conference (ITC'02). Table 1 gives the details of the ITC’02 

benchmark circuits. Tables 2 and 3 give the details of the d695 

and p22810 ITC’02 benchmark circuits respectively. 

The task of the optimization algorithm is to minimize the 

test time taken as the objective function represented in the 

following equation (1). 

 

( ) (1 max( , ). min( , )iT W Si So tpi Si So= + +       (1) 

 
where, Si and So are the length of the input and output scan 

chain and tpi is the test pattern for the SoC benchmark circuit 

optimization of core i. 

 

Table 1. Benchmark circuit details 

 
SOC d695 p22810 

Number of Modules 11 29 

Number of Tests 10 30 

Number of Levels 2 3 

Number of I/Os 1845 4283 

Number of SFFs 6384 24723 

Pattern 

Count 

Minimum 12 1 

Average 88 830 

Maximum 234 12324 

Number of Scan Chain Length 137 196 

Scan 

Chain 

Length 

Minimum 32 1 

Average 46 126 

Maximum 55 400 
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Table 2. Benchmark details for SoC d695 

 

Core 
No. of 

inputs 

No. of 

Outputs 

Internal 

Scan 

Chains 

Min 

Chain 

Length 

Max 

Chain 

Length 

No. of 

Tests 

Patterns 

#1 32 32 0 0 0 12 

#2 207 108 0 0 0 73 

#3 34 11 1 32 32 75 

#4 36 39 4 52 54 105 

#5 38 304 32 44 45 110 

#6 62 152 16 39 41 234 

#7 77 150 16 33 34 95 

#8 35 48 4 44 46 97 

#9 35 320 32 54 54 12 

#10 28 106 32 51 55 68 

 

Table 3. Benchmark details for SoC p22810 

 

Core 
No. of 

inputs 

No. of 

Outputs 

Internal 

Scan 

Chains 

Min 

Chain 

Length 

Max 

Chain 

Length 

No. of 

Tests 

Patterns 

#1 10 67 0 0 0 10 

#2 10 67 0 0 0 89 

#3 28 56 10 14 15 785 

#4 47 33 0 0 0 12324 

#5 38 26 0 0 0 3108 

#6 48 64 0 0 0 222 

#7 90 112 29 39 41 202 

#8 80 64 0 0 0 712 

#9 84 64 0 0 0 2632 

#10 36 16 0 0 0 2608 

#11 116 123 24 51 55 175 

#12 50 30 4 13 15 38 

#13 56 23 8 16 18 94 

#14 40 23 11 21 23 93 

#15 68 149 4 12 12 1 

#16 22 15 3 26 31 108 

#17 84 42 6 21 23 37 

#18 13 43 1 23 31 8 

#19 223 69 4 12 21 25 

#20 53 11 5 26 28 644 

#21 38 29 3 9 9 58 

#22 45 40 4 12 14 124 

#23 115 76 10 16 17 465 

#24 54 40 3 7 8 59 

#25 31 8 7 14 14 40 

#26 73 23 5 18 19 27 

#27 58 46 18 23 24 215 

#28 66 33 31 34 35 181 

#29 285 94 1 4 6 2 

#30 48 43 5 9 10 26 

 

 

2. LITERATURE REVIEW 

 
The different test scheduling methods include non-

partitioned, partitioned technique, and preemptive test 

scheduling. In non-partitioned test scheduling, the new test can 

not begin until al tests in a session have been completed. 

Therefore, an improvement in the test time while the 

partitioned test is scheduled as early as possible. Preemptive 

test scheduling minimizes idle time. 

For core-based systems to reduce test time previous work 

based on earliest TAM optimization and wrapper design. 

Based on the core terminals requirement wrapper design 

algorithm was developed. The Integer Linear Programming 

(ILP) model was proposed for the "Test Bus Assignment 

Problem" [4] by the optimal allocation of test buses. A new 

technique was proposed by Iyengar et al. [5, 6] which was 

based on a 2-Dimensional rectangle packing problem for the 

wrapper and TAM co-optimization that uses parity-optimal 

points. 

In open shop scheduling [7] given shop consists of m 

processors. Each work is performed on more than one 

processor for each job. The objective of open shop scheduling 

is to reduce finish time which is the latest completion time of 

individual schedules for each processor. The 2D bin packing 

problem was solved by a Simulated Annealing (SA) algorithm 

[8] which minimizes TAT. 

RAIN (RAndom INsertion) algorithm [9] where the core is 

represented as a rectangle. The rectangle width is TAT and the 

rectangle height is TAM width. The method of wrapper design 

has been used to generate a rectangle sequence by using the 

formulation of a Genetic algorithm. From the collection of 

rectangles generated for that core, one rectangle must be 

chosen in order to reduce the overall test time.  

The hierarchy aware test planning method used to optimize 

the TAM of hierarchical SoC has been discussed by 

Chakrabarty et al. [10]. Two practical scenarios 1) Wrappers 

and TAM architecture for the child cores are fixed and parent 

cores are determined. 2) Wrappers and TAM are soft for both 

the parent and child cores.  

A multi-level TAM architecture was proposed by 

Chakrabarty et al. [10], explaining the use of multi-level TAM 

optimization flattened SoCs. The new wrapper architecture for 

parent cores with two disjoint test modes for child and parent 

core testing is proposed by Goel et al. [11].  

 

 

3. PROPOSED WORK 

 
3.1 Ant colony optimization (ACO) algorithm 

 
Ant Colony Optimization (ACO) [12, 13] is a population-

based approach to solving computational problems. This is 

based on the social behavior of ants in finding the best route to 

the nesting food source through indirect communication 

between the ants using the chemical substance pheromone.  

Ants leave pheromones as they move so that other ants can 

detect and follow this pheromone which is shown in Figure 1.   

 

 
 

Figure 1. Ant colony optimization 
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In ACO, artificial ants use heuristic information and a 

combination of artificial pheromones to develop new solutions. 

ACO has been shown to have been very successful in solving 

many problems. 

 

3.2 Modified ant colony optimization (MACO) 

 

In the Modified Ant Colony Optimization (MACO) [14-16], 

the core scheduling of the selection is based on 'maxtw' and 

partly relies on the probability. First, the core is selected based 

on the probability, and then tested using the constraints. If the 

conditions are satisfied, the core will be chosen. Otherwise, the 

next highest probability core will be tested. This step will be 

repeated until all conditions have been satisfied. Let us assume 

that an ant begins with a core i and has to reach out to other 

cores. The first core i is chosen at random and then the next 

core j is selected with probability ‘prob’. This process will be 

repeated until all cores have been scheduled. This algorithm 

uses an ant density model. According to the ant density model, 

the quantity of the pheromone trail left by the ants remains 

constant throughout the path. 

 

 probij = 
𝜏𝑖𝑗𝜂𝑖𝑗

𝛽

∑ 𝜏𝑖𝑗𝜂
𝑖𝑗
𝛽

𝑛

𝑖=𝑛

                        (2) 

 

where, probij=Probability of core j being scheduled as the next 

core 

τij = Trail value for pheromones from route i to j >= 0 

ηij = Heuristic value, which depends on the core test time >= 0  

ηij = 1/tt where tt is the test time of the core. 

 

 
 

Figure 2. Flowchart for modified ant colony optimization 
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In ACO cores are selected randomly whereas in MACO 

cores are selected based on the probability and the cores 

satisfying the constraints are chosen. 

β is a parameter for heuristic value enhancement. Its value 

for hierarchical cores is higher than for flat cores so that the 

hierarchical cores can be tested first. When an ant travels from 

core i to j, the pheromone route needs to be updated. This 

process is referred to as trail intensification. The following Eq. 

(3) can be used for the formulation of trail intensification. 

 

 𝜏(𝑖 𝑡𝑜 𝑗) = {
𝑄, 𝑖𝑓 𝑎𝑛𝑡 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (3) 

 

Q is a parameter that is constant. It is the amount of trail left 

when an ant moves from core i to j. The trail intensification is 

done at the time of core selection. After scheduling, using an 

ant, the test time is calculated. The scheduling process is 

repeated for no. of ants and the best test time of all is selected. 

The results using ITC’02 benchmark circuits are shown in the 

next chapter. This algorithm schedules the cores with a fork 

and merge technique and provides the optimal solution. 

Input: Let there be n number of cores with maximum tam 

width available which is ‘maxtw’. Each core has a core 

number, tam width ‘tw’. The test time ‘tt’ of each core is 

calculated using the wrapper algorithm and the int u which is 

used to verify whether the core is scheduled or not. 

Output: best_time is the minimum test time attained after a 

number of iterations. The test time is calculated for each 

iteration and the best_test time represents the minimum test 

time of all the test times. 

 

Table 4. Input parameters for core initialization 

 

Number of Cores 
10 (d695 SoC) 

30 (p22810 SoC) 

Ant Count 

20 (d695 SoC), 

60 (p22810 SoC) 

i.e. twice the core count 

Number of Iterations 100 

TAM width varies between 16 and 64 

Alpha α 1 (pheromone trail control parameter) 

Beta β 
1 (parameter used to enhance the 

heuristic value) 

Rho ρ 1 (Trial persistence) 

 

Table 4 shows the input parameters and their corresponding 

value. These parameters are used in the core initialization of 

d695 and p22810 SoC benchmark circuits for various TAM 

widths. 

Figure 2 shows the MACO algorithm flow chart. Initially, 

the input parameters are read followed by parameter 

initialization and for all the ants updating of the parameter is 

done. The probability for a core i is updated and check the test 

condition. If the condition is true, the values are updated else 

if it is false, initialize the array of all cores. Then update 

pheromone trial and assign i value to j. Test time is calculated 

and updated with the best test time. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The results obtained using C # software and the comparison 

of the test time obtained using different algorithms are made 

and the algorithm is evaluated, which gives the minimum test 

time. 

Figures 3 and 4 show the core initialization of the d695 SoC 

benchmark circuit using ACO and MACO algorithm 

respectively. 

From Figures 3 and 4, it is observed that for the core 

initialization of d695 using ACO and MACO algorithm 

several input parameters have been considered and the testing 

time is obtained as output. Figures 5 and 6 show the core 

initialization of the p22810 SoC benchmark circuit for TAM 

width 16 using ACO and MACO algorithm respectively. 

From Figures 5 and 6, it is observed that for the core 

initialization of p22810 using ACO and MACO algorithm 

several input parameters have been considered and the testing 

time is obtained as output. Figures 7 and 8 show the graphical 

representation of Iteration vs Best Result Point for d695 SoC 

using ACO and MACO algorithm respectively. 

From Figures 7 and 8 it is observed that Best Result Point 

using ACO and MACO for d695 SoC was achieved at iteration 

4 and 3 respectively. Figures 9 and 10 show the graphical 

representation of Iteration vs Best Result Point for p22810 

SoC using ACO and MACO algorithm respectively. 

From Figures 9 and 10 it is observed that Best Result Point 

using ACO and MACO for p22810 SoC was achieved at 

iteration 14 and 12 respectively. Table 3 shows the comparison 

of testing time values obtained using the ACO algorithm and 

MACO algorithm of d695 and p22810 SoC algorithm for 

various TAM widths 16, 24, 32, 40, 48, 56, 64. 

Table 5 shows the result comparison between the ACO and 

the modified ACO algorithm in terms of their testing time. 

From Table 5 it is observed that the testing time using the 

Modified Ant Colony algorithm improved 47% for d698 SoC 

and improved 10% for p22810 SoC benchmark circuits. 

From Figure 11 it is observed that for d695 ITC’02 SoC 

benchmark circuit, testing time is reduced when the MACO 

algorithm is used compared to the ACO algorithm. Here the 

testing time obtained using the MACO algorithm is minimum 

for the different TAM widths. Similarly, Figure 12 shows the 

testing time for the p22810 ITC’02 SoC benchmark circuit 

using ACO and MACO algorithm in graphical format. From 

Figure 12 it is observed that among the proposed optimization 

algorithms, the MACO algorithm performs test scheduling 

with minimum testing time for the different TAM widths. 

 

Table 5. Testing time comparison between ACO and 

MACO algorithm 

 

SoC 
TAM 

Width 

Testing Time(s) 

MACO ACO 

d695 

16 0.07221963 0.1202265 

24 0.07578022 0.1257289 

32 0.07919108 0.1263917 

40 0.08185115 0.1268058 

48 0.08599822 0.1272225 

56 0.08984332 0.1281162 

64 0.09221849 0.1302590 

p22810 

16 0.95839152 1.0105696 

24 0.96186944 1.0208739 

32 0.97092460 1.0288309 

40 0.98114871 1.0331053 

48 0.98479880 1.0363759 

56 0.98924347 1.0425869 

64 0.99039125 1.0505697 
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Figure 3. Core initialization of the d695 benchmark circuit using the ACO algorithm (W=16) 

 

 
 

Figure 4. Core initialization of the d695 benchmark circuit using the MACO algorithm (W=16) 

 

 
 

Figure 5. Core initialization of the p22810 benchmark circuit using the ACO algorithm (W=16) 
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Figure 6. Core initialization of the p22810 benchmark circuit using the MACO algorithm (W=16) 

 

     
 

Figure 7. Graph showing iteration vs best result                        Figure 8. Graph showing iteration vs best result point of 

   point of ant colony algorithm for d695 SoC                                         modified ant colony algorithm for d695 SoC
 

      
 

        Figure 9. Graph showing iteration vs best result                               Figure 10. Graph showing iteration vs best result point 

     point of ant colony algorithm for p22810 SoC                                     of modified ant colony algorithm for p22810 SoC 
 

          
 

Figure 11. Graphical illustration of testing time                          Figure 12. Graphical illustration of testing time  

using ACO and MACO for d695 SoC                                        using ACO and MACO for p22810 SoC 
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5. CONCLUSIONS AND FUTURE SCOPE

In this article nature-inspired, Modified ACO optimization 

algorithm is used to reduce the test time of SoCs. The 

efficiency of the Modified ACO algorithm is realized by 

comparing it with the ACO algorithm. Experiments with d695 

and p22810 SoC comparisons have shown that the modified 

ACO algorithm is better than the ACO algorithm. In the case 

of d695, the Modified ACO algorithm achieves a reduction in 

test time of 47% when compared to the ACO algorithm, 

wherein the p22810 case, the Modified ACO algorithm 

achieves a reduction in test time of 10% when compared to 

ACO algorithm. The results of the experiment clearly indicate 

that the modified ACO algorithm is better suited to reducing 

the test time. In future recent algorithms like Grey Wolf 

Optimization Algorithm, Whale Optimization Algorithm, 

Dragonfly Algorithm and Artificial Fish Swarm Algorithm 

can be used to minimize the test time further. 
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