

Test Scheduling of Core Based System-on-Chip Using Modified Ant Colony Optimization

Gokul Chandrasekaran1*, Vanchinathan Kumarasamy1, Gnanavel Chinraj2

1 Department of EEE, Velalar College of Engineering and Technology, Affiliated to Anna University, Chennai 600025, India
2 AMED Deemed to be University, Chennai 600025, India

Corresponding Author Email: gokul@velalarengg.ac.in

https://doi.org/10.18280/jesa.520607

ABSTRACT

Received: 12 August 2019

Accepted: 25 November 2019

 A System-on-Chip (SoC) is an integrated circuit that combines various electronic components

in a single die. The SoC components mostly involve user-defined logic, embedded memories,

analog, digital and mixed-signal blocks. The testing of an SoC for manufacturing defects is an

important task due to IC design complexity, further, it also affects the final cost of the chip.

Due to the high complexity involved in SoC test scheduling, various techniques were suggested

to reduce the testing time. This paper introduces a novel SoC test scheduling technique based

on a Modified Ant Colony Optimization (MACO) algorithm. The testing is performed on the

benchmark circuits of ITC’02. The experiments performed on d695 and p22810 SoC

benchmark circuits. The results show that the MACO algorithm can achieve reduced test time

compared to the ACO algorithm. When compared with ACO, the proposed algorithm MACO

reduces the testing time by 47% and 10% for d695 and p22810 SoC benchmark circuits

respectively.

Keywords:

system-on-chip (SoC), test access

mechanism (TAM), ant colony

optimization (ACO), artificial

intelligence, modified ant colony

optimization

1. INTRODUCTION

Currently, Integrated Circuits (ICs) are embedded in a

variety of products and systems. IC’s comprises of a huge

number of transistors and hardware modules. Millions of

transistors and hardware modules can be manufactured on a

single chip called a System on Chip (SoC). An SoC chip

consists of peripheral devices, processors and controllers. The

complexity of ICs is a major challenge in SoC design.

Intellectual Property (IP) cores used for SoC designs are

embedded in system chip and it is impossible to access it

directly. Testing cost highly depends on the testing time which

increases when the system becomes more complex. After

manufacturing to test individual cores on system-level Test

Access Mechanism (TAM) is necessary. The major parts in

test access architecture of SoC are TAM and Test wrapper.

These components have an impact on the vector memory

required on Automatic Test Equipment (ATE). The wrapper is

a thin shell surrounding the core acting as an interface between

the core and TAM [1-3].

The wrapper is linked to core inputs, outputs and scan

chains outside the core. The TAM wires are used to apply test

vectors to the wrapper. ATE stores the test vectors which are

to be applied to SoCs and are applied through TAM wires. The

cores are scheduled for testing in order to obtain minimum test

time. Due to the increase in SoC size, Test Application Time

(TAT), test data volume and test resource usage also increase.

To reduce TAT, SoC test resources should be designed and

used effectively. The main aim is to reduce the test time of

SoCs by efficient scheduling techniques. In this research paper,

a Modified Ant Colony Optimization (ACO) technique is used

to optimize the testing time for various ITC’02 SoC

benchmark circuits. The results show that the Modified ACO

technique provides better results compared to other techniques.

The ITC'02 SoC Test Benchmark circuits are a set of

benchmark circuits presented at the IEEE International Test

Conference (ITC'02). Table 1 gives the details of the ITC’02

benchmark circuits. Tables 2 and 3 give the details of the d695

and p22810 ITC’02 benchmark circuits respectively.

The task of the optimization algorithm is to minimize the

test time taken as the objective function represented in the

following equation (1).

() (1 max(,). min(,)iT W Si So tpi Si So= + + (1)

where, Si and So are the length of the input and output scan

chain and tpi is the test pattern for the SoC benchmark circuit

optimization of core i.

Table 1. Benchmark circuit details

SOC d695 p22810

Number of Modules 11 29

Number of Tests 10 30

Number of Levels 2 3

Number of I/Os 1845 4283

Number of SFFs 6384 24723

Pattern

Count

Minimum 12 1

Average 88 830

Maximum 234 12324

Number of Scan Chain Length 137 196

Scan

Chain

Length

Minimum 32 1

Average 46 126

Maximum 55 400

Contributor
Duke

University

Philips

Semiconductors

Journal Européen des Systèmes Automatisés
Vol. 52, No. 6, December, 2019, pp. 599-605

Journal homepage: http://iieta.org/journals/jesa

599

Table 2. Benchmark details for SoC d695

Core
No. of

inputs

No. of

Outputs

Internal

Scan

Chains

Min

Chain

Length

Max

Chain

Length

No. of

Tests

Patterns

#1 32 32 0 0 0 12

#2 207 108 0 0 0 73

#3 34 11 1 32 32 75

#4 36 39 4 52 54 105

#5 38 304 32 44 45 110

#6 62 152 16 39 41 234

#7 77 150 16 33 34 95

#8 35 48 4 44 46 97

#9 35 320 32 54 54 12

#10 28 106 32 51 55 68

Table 3. Benchmark details for SoC p22810

Core
No. of

inputs

No. of

Outputs

Internal

Scan

Chains

Min

Chain

Length

Max

Chain

Length

No. of

Tests

Patterns

#1 10 67 0 0 0 10

#2 10 67 0 0 0 89

#3 28 56 10 14 15 785

#4 47 33 0 0 0 12324

#5 38 26 0 0 0 3108

#6 48 64 0 0 0 222

#7 90 112 29 39 41 202

#8 80 64 0 0 0 712

#9 84 64 0 0 0 2632

#10 36 16 0 0 0 2608

#11 116 123 24 51 55 175

#12 50 30 4 13 15 38

#13 56 23 8 16 18 94

#14 40 23 11 21 23 93

#15 68 149 4 12 12 1

#16 22 15 3 26 31 108

#17 84 42 6 21 23 37

#18 13 43 1 23 31 8

#19 223 69 4 12 21 25

#20 53 11 5 26 28 644

#21 38 29 3 9 9 58

#22 45 40 4 12 14 124

#23 115 76 10 16 17 465

#24 54 40 3 7 8 59

#25 31 8 7 14 14 40

#26 73 23 5 18 19 27

#27 58 46 18 23 24 215

#28 66 33 31 34 35 181

#29 285 94 1 4 6 2

#30 48 43 5 9 10 26

2. LITERATURE REVIEW

The different test scheduling methods include non-

partitioned, partitioned technique, and preemptive test

scheduling. In non-partitioned test scheduling, the new test can

not begin until al tests in a session have been completed.

Therefore, an improvement in the test time while the

partitioned test is scheduled as early as possible. Preemptive

test scheduling minimizes idle time.

For core-based systems to reduce test time previous work

based on earliest TAM optimization and wrapper design.

Based on the core terminals requirement wrapper design

algorithm was developed. The Integer Linear Programming

(ILP) model was proposed for the "Test Bus Assignment

Problem" [4] by the optimal allocation of test buses. A new

technique was proposed by Iyengar et al. [5, 6] which was

based on a 2-Dimensional rectangle packing problem for the

wrapper and TAM co-optimization that uses parity-optimal

points.

In open shop scheduling [7] given shop consists of m

processors. Each work is performed on more than one

processor for each job. The objective of open shop scheduling

is to reduce finish time which is the latest completion time of

individual schedules for each processor. The 2D bin packing

problem was solved by a Simulated Annealing (SA) algorithm

[8] which minimizes TAT.

RAIN (RAndom INsertion) algorithm [9] where the core is

represented as a rectangle. The rectangle width is TAT and the

rectangle height is TAM width. The method of wrapper design

has been used to generate a rectangle sequence by using the

formulation of a Genetic algorithm. From the collection of

rectangles generated for that core, one rectangle must be

chosen in order to reduce the overall test time.

The hierarchy aware test planning method used to optimize

the TAM of hierarchical SoC has been discussed by

Chakrabarty et al. [10]. Two practical scenarios 1) Wrappers

and TAM architecture for the child cores are fixed and parent

cores are determined. 2) Wrappers and TAM are soft for both

the parent and child cores.

A multi-level TAM architecture was proposed by

Chakrabarty et al. [10], explaining the use of multi-level TAM

optimization flattened SoCs. The new wrapper architecture for

parent cores with two disjoint test modes for child and parent

core testing is proposed by Goel et al. [11].

3. PROPOSED WORK

3.1 Ant colony optimization (ACO) algorithm

Ant Colony Optimization (ACO) [12, 13] is a population-

based approach to solving computational problems. This is

based on the social behavior of ants in finding the best route to

the nesting food source through indirect communication

between the ants using the chemical substance pheromone.

Ants leave pheromones as they move so that other ants can

detect and follow this pheromone which is shown in Figure 1.

Figure 1. Ant colony optimization

600

In ACO, artificial ants use heuristic information and a

combination of artificial pheromones to develop new solutions.

ACO has been shown to have been very successful in solving

many problems.

3.2 Modified ant colony optimization (MACO)

In the Modified Ant Colony Optimization (MACO) [14-16],

the core scheduling of the selection is based on 'maxtw' and

partly relies on the probability. First, the core is selected based

on the probability, and then tested using the constraints. If the

conditions are satisfied, the core will be chosen. Otherwise, the

next highest probability core will be tested. This step will be

repeated until all conditions have been satisfied. Let us assume

that an ant begins with a core i and has to reach out to other

cores. The first core i is chosen at random and then the next

core j is selected with probability ‘prob’. This process will be

repeated until all cores have been scheduled. This algorithm

uses an ant density model. According to the ant density model,

the quantity of the pheromone trail left by the ants remains

constant throughout the path.

 probij =
𝜏𝑖𝑗𝜂𝑖𝑗

𝛽

∑ 𝜏𝑖𝑗𝜂
𝑖𝑗
𝛽

𝑛

𝑖=𝑛

 (2)

where, probij=Probability of core j being scheduled as the next

core

τij = Trail value for pheromones from route i to j >= 0

ηij = Heuristic value, which depends on the core test time >= 0

ηij = 1/tt where tt is the test time of the core.

Figure 2. Flowchart for modified ant colony optimization

601

In ACO cores are selected randomly whereas in MACO

cores are selected based on the probability and the cores

satisfying the constraints are chosen.

β is a parameter for heuristic value enhancement. Its value

for hierarchical cores is higher than for flat cores so that the

hierarchical cores can be tested first. When an ant travels from

core i to j, the pheromone route needs to be updated. This

process is referred to as trail intensification. The following Eq.

(3) can be used for the formulation of trail intensification.

 𝜏(𝑖 𝑡𝑜 𝑗) = {
𝑄, 𝑖𝑓 𝑎𝑛𝑡 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

Q is a parameter that is constant. It is the amount of trail left

when an ant moves from core i to j. The trail intensification is

done at the time of core selection. After scheduling, using an

ant, the test time is calculated. The scheduling process is

repeated for no. of ants and the best test time of all is selected.

The results using ITC’02 benchmark circuits are shown in the

next chapter. This algorithm schedules the cores with a fork

and merge technique and provides the optimal solution.

Input: Let there be n number of cores with maximum tam

width available which is ‘maxtw’. Each core has a core

number, tam width ‘tw’. The test time ‘tt’ of each core is

calculated using the wrapper algorithm and the int u which is

used to verify whether the core is scheduled or not.

Output: best_time is the minimum test time attained after a

number of iterations. The test time is calculated for each

iteration and the best_test time represents the minimum test

time of all the test times.

Table 4. Input parameters for core initialization

Number of Cores
10 (d695 SoC)

30 (p22810 SoC)

Ant Count

20 (d695 SoC),

60 (p22810 SoC)

i.e. twice the core count

Number of Iterations 100

TAM width varies between 16 and 64

Alpha α 1 (pheromone trail control parameter)

Beta β
1 (parameter used to enhance the

heuristic value)

Rho ρ 1 (Trial persistence)

Table 4 shows the input parameters and their corresponding

value. These parameters are used in the core initialization of

d695 and p22810 SoC benchmark circuits for various TAM

widths.

Figure 2 shows the MACO algorithm flow chart. Initially,

the input parameters are read followed by parameter

initialization and for all the ants updating of the parameter is

done. The probability for a core i is updated and check the test

condition. If the condition is true, the values are updated else

if it is false, initialize the array of all cores. Then update

pheromone trial and assign i value to j. Test time is calculated

and updated with the best test time.

4. RESULTS AND DISCUSSIONS

The results obtained using C # software and the comparison

of the test time obtained using different algorithms are made

and the algorithm is evaluated, which gives the minimum test

time.

Figures 3 and 4 show the core initialization of the d695 SoC

benchmark circuit using ACO and MACO algorithm

respectively.

From Figures 3 and 4, it is observed that for the core

initialization of d695 using ACO and MACO algorithm

several input parameters have been considered and the testing

time is obtained as output. Figures 5 and 6 show the core

initialization of the p22810 SoC benchmark circuit for TAM

width 16 using ACO and MACO algorithm respectively.

From Figures 5 and 6, it is observed that for the core

initialization of p22810 using ACO and MACO algorithm

several input parameters have been considered and the testing

time is obtained as output. Figures 7 and 8 show the graphical

representation of Iteration vs Best Result Point for d695 SoC

using ACO and MACO algorithm respectively.

From Figures 7 and 8 it is observed that Best Result Point

using ACO and MACO for d695 SoC was achieved at iteration

4 and 3 respectively. Figures 9 and 10 show the graphical

representation of Iteration vs Best Result Point for p22810

SoC using ACO and MACO algorithm respectively.

From Figures 9 and 10 it is observed that Best Result Point

using ACO and MACO for p22810 SoC was achieved at

iteration 14 and 12 respectively. Table 3 shows the comparison

of testing time values obtained using the ACO algorithm and

MACO algorithm of d695 and p22810 SoC algorithm for

various TAM widths 16, 24, 32, 40, 48, 56, 64.

Table 5 shows the result comparison between the ACO and

the modified ACO algorithm in terms of their testing time.

From Table 5 it is observed that the testing time using the

Modified Ant Colony algorithm improved 47% for d698 SoC

and improved 10% for p22810 SoC benchmark circuits.

From Figure 11 it is observed that for d695 ITC’02 SoC

benchmark circuit, testing time is reduced when the MACO

algorithm is used compared to the ACO algorithm. Here the

testing time obtained using the MACO algorithm is minimum

for the different TAM widths. Similarly, Figure 12 shows the

testing time for the p22810 ITC’02 SoC benchmark circuit

using ACO and MACO algorithm in graphical format. From

Figure 12 it is observed that among the proposed optimization

algorithms, the MACO algorithm performs test scheduling

with minimum testing time for the different TAM widths.

Table 5. Testing time comparison between ACO and

MACO algorithm

SoC
TAM

Width

Testing Time(s)

MACO ACO

d695

16 0.07221963 0.1202265

24 0.07578022 0.1257289

32 0.07919108 0.1263917

40 0.08185115 0.1268058

48 0.08599822 0.1272225

56 0.08984332 0.1281162

64 0.09221849 0.1302590

p22810

16 0.95839152 1.0105696

24 0.96186944 1.0208739

32 0.97092460 1.0288309

40 0.98114871 1.0331053

48 0.98479880 1.0363759

56 0.98924347 1.0425869

64 0.99039125 1.0505697

602

Figure 3. Core initialization of the d695 benchmark circuit using the ACO algorithm (W=16)

Figure 4. Core initialization of the d695 benchmark circuit using the MACO algorithm (W=16)

Figure 5. Core initialization of the p22810 benchmark circuit using the ACO algorithm (W=16)

603

Figure 6. Core initialization of the p22810 benchmark circuit using the MACO algorithm (W=16)

Figure 7. Graph showing iteration vs best result Figure 8. Graph showing iteration vs best result point of

 point of ant colony algorithm for d695 SoC modified ant colony algorithm for d695 SoC

 Figure 9. Graph showing iteration vs best result Figure 10. Graph showing iteration vs best result point

 point of ant colony algorithm for p22810 SoC of modified ant colony algorithm for p22810 SoC

Figure 11. Graphical illustration of testing time Figure 12. Graphical illustration of testing time

using ACO and MACO for d695 SoC using ACO and MACO for p22810 SoC

604

5. CONCLUSIONS AND FUTURE SCOPE

In this article nature-inspired, Modified ACO optimization

algorithm is used to reduce the test time of SoCs. The

efficiency of the Modified ACO algorithm is realized by

comparing it with the ACO algorithm. Experiments with d695

and p22810 SoC comparisons have shown that the modified

ACO algorithm is better than the ACO algorithm. In the case

of d695, the Modified ACO algorithm achieves a reduction in

test time of 47% when compared to the ACO algorithm,

wherein the p22810 case, the Modified ACO algorithm

achieves a reduction in test time of 10% when compared to

ACO algorithm. The results of the experiment clearly indicate

that the modified ACO algorithm is better suited to reducing

the test time. In future recent algorithms like Grey Wolf

Optimization Algorithm, Whale Optimization Algorithm,

Dragonfly Algorithm and Artificial Fish Swarm Algorithm

can be used to minimize the test time further.

REFERENCES

[1] Pouget, J., Larsson, E., Peng, Z.B. (2005). Multiple-

constraint driven system-on-chip test time optimization.

Journal of Electronic Testing, 21(6): 599-611.

https://doi.org/10.1007/s10836-005-2911-4

[2] Kang, W.J., Hwang, S.Y. (2014). A test wrapper design

to reduce test time for multi-core SoC. The Journal of

Korean Institute of Communications and Information

Sciences, 39(1): 1-7.

https://doi.org/10.7840/kics.2014.39B.1.1

[3] Marrouche, W., Farah, R., Harmanani, H.M. (2018). A

strength pareto evolutionary algorithm for optimizing

system-on-chip test schedules. International Journal of

Computational Intelligence and Applications, 17(02):

1850010. https://doi.org/10.1142/S1469026818500104

[4] Chakrabarty, K. (2000). Test scheduling for core-based

systems using mixed-integer linear programming. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(10): 1163-1174.

https://doi.org/10.1109/43.875306

[5] Iyengar, V., Chakrabarty, K. (2002). System-on-a-chip

test scheduling with precedence relationships,

preemption, and power constraints. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 21(9): 1088-1094.

https://doi.org/10.1109/TCAD.2002.801102

[6] Chakrabarty, K., Marinissen, E.J. (2003). Test access

mechanism optimization, test scheduling, and tester data

volume reduction for system-on-chip. IEEE Transactions

on Computers, 52(12): 1619-1632.

https://doi.org/10.1109/TC.2003.1252857

[7] Wang, Z., Chakrabarty, K., Wang, S. (2009). Integrated

LFSR reseeding, test-access optimization, and test

scheduling for core-based system-on-chip. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 28(8): 1251-1264.

https://doi.org/10.1109/TCAD.2009.2021731

[8] Zou, W., Reddy, S.M., Pomeranz, I., Huang, Y. (2003).

SOC test scheduling using simulated annealing. In

Proceedings IEEE VLSI Test Symposium, 325-330.

https://doi.org/10.1109/VTEST.2003.1197670

[9] Im, J.B., Chun, S., Kim, G., An, J.H., Kang, S. (2004).

RAIN (Random INsertion) scheduling algorithm for

SOC Test. IEEE Asian Test Symposium, 242-247.

https://doi.org/10.1109/ATS.2004.71

[10] Chakrabarty, K., Iyengar, V., Krasniewski, M.D. (2005).

Test planning for modular testing of hierarchical SOCs.

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 24(3): 435-448.

https://doi.org/10.1109/TCAD.2004.842816

[11] Goel, S., Marinissen, E.J., Sehgal, A., Chakrabarty, K.

(2008). Testing of SoCs with hierarchical cores: common

fallacies, test access optimization, and test scheduling.

IEEE Transactions on Computers, 58(3): 409-423.

https://doi.org/10.1109/TC.2008.169

[12] Yang, Q., Chen, W.N., Yu, Z., Gu, T., Li, Y., Zhang, H.,

Zhang, J. (2016). Adaptive multimodal continuous ant

colony optimization. IEEE Transactions on Evolutionary

Computation, 21(2): 191-205.

https://doi.org/10.1109/TEVC.2016.2591064

[13] Dorigo, M., Blum, C. (2005). Ant colony optimization

theory: A survey. Theoretical Computer Science, 344(2-

3): 243-278. https://doi.org/10.1016/j.tcs.2005.05.020

[14] Wang, Z.Y., Xing, H.L., Li, T.R., Yang, Y., Qu, R., Pan,

Y. (2015). A modified ant colony optimization algorithm

for network coding resource minimization. IEEE

Transactions on Evolutionary Computation, 20(3): 325-

342. https://doi.org/10.1109/TEVC.2015.2457437

[15] Liu, J.H., Yang, J.G., Liu, H.P., Tian, X.J., Gao, M.

(2017). An improved ant colony algorithm for robot path

planning. Soft Computing, 21(19): 5829-5839.

https://doi.org/10.1007/s00500-016-2161-7

[16] Dorigo, M., Stützle, T. (2019). Ant colony optimization:

overview and recent advances. In Handbook of

Metaheuristics, Springer, Cham, 311-351.

https://doi.org/10.1007/978-3-319-91086-4_10

605

