
 

 
 

 
 

 
1. INTRODUCTION 

 

The problems of fluid dynamics are often difficult to solve 

because the system of equations governing the phenomenon 

which is strongly nonlinear system. It is difficult to find exact 

solutions. However, CFD (Computational Fluid Dynamics) 

technology especially the calculation applied to fluid 

dynamics change was successful; these successes are due to 

the close interaction between theory, numerical simulation and 

experimentation in fluid dynamics. On the one hand, 

experience is essential to test the hypotheses and the results 

that emerge from the theory [1]; on the other hand, the theory 

is needed to explain the results. Numerical simulation is 

independent of experience, it is necessary for the validation of 

experimental results.  

The results are presented for nozzle flow subsonic - 

supersonic. Various numerical tests presented in this study 

relate to the influence of the variation of the geometry of the 

nozzle such that the angle of divergence as well as the effect 

of the variation of the input of the characteristic quantities of 

the pressure flows.  

 

 

2. TURBULENCE MODELLING 

 

As part of the fluid mechanics treatment of turbulence, the 

use of Reynolds decomposition applied to the solutions of the 

Navies-Stokes equation simplifies the problem by eliminating 

the fluctuations of periods and short amplitudes. 

The numerical results obtained detected the different 

phenomena observed experimentally. 

Using the finite volume method Mac Cormack is used for 

solving mathematical model equations.  

The turbulence model used is that of the two additional 

transport equations k-ω SST Menter used to describe 

turbulence as summarized below: 
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The left hand side of the Eqs. (1) and (2) is the Lagrangian 

derivative
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 and the turbulent stress tensor 𝜎𝑖𝑗 is 

given by: 
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The function 𝐹1 is designed to blend the model coefficients 

of the original k-ω model in boundary layer zones with the 

transformedk-ωmodel in free shear layer and free stream 

zones. This function is expressed in term of local variables as: 
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ABSTRACT 

 
This work concerns the numerical simulation of a non-reactive turbulent flow of a compressible fluid (air) in a convergent 

divergent nozzle. The numerical study of this turbulent nozzle flow has been carried out by solving the Reynolds averaged 

Navier-Stockes equations. We have also used the two transport equations of type (k, ω) SST (Shear-Stress-Transport) of 

Menter to model the turbulence. The finite volume method is used to solve the system of equations. McCormack scheme has 

been used. The present results are compared with experimental results of the literature. In order to study the pressure influence 

on the flow characteristics such as speed pressure and temperature, etc. and particularly delamination phenomenon. These 

results are represented by field’s contours and variable flow profiles of the axis of the nozzle and near the wall.  

Keywords: CFD, Converging-diverging Nozzle, Compressible Flow 2D, Finite Volume, Shock Wave, Supersonic, 

Turbulence Flow. 

 

 

 
 

673

https://www.mesrs.dz/ecoles-normales-superieures


 






















































yCDk

k

y

v

y

k
F 2

2

21

4
,

500

09.0

2
maxmintanh









   (4) 

  

where CDkω is a cross diffusion term added in Eq. (4)  

According to Bradshaw’s [8] assumption the eddy viscosity is 

defined in the following way: 
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where F2 is a function that is one for the boundary-layer flows 

and zero for the free shear layers 

With:  
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2.1 Reliability condition in turbulence models 

 

The two-equation turbulence models are based on the 

Boussinesq assumptions where the Reynolds stresses is 

expressed as a linear function of the mean strain tensor: 

 





 ijkSiiSij

kC
u jui 3

2

3

1
22

 








                              
(6) 

 

where Cμ as shown by V. P. Lebedev and al. [3] these 

equations can give negative values of the normal stress if Sijis 

too large. Bradshaw [8] has noticed that in two-dimensional 

boundary layers submitted to a strong pressure gradient the 

shear stress was approximately proportional to the turbulent 

kinetic energy with: 

 

kCuv                                                                          (7) 

 

These two remarks led to introduction of weakly non-linear 

turbulence models in which the𝐶𝜇  factor is allowed to vary 

according to: 
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And 𝐴0 = 0, 𝐴𝑠 = 2 , 𝐴𝛺 = 0  in this case the Bradshaw [8] 

coefficient (0.31) is substituted by Cμ
1/2 in the formulation of 

the eddy viscosity. 

 

 

3. NUMERICAL METHOD 

 
The Navier-Stokes energy turbulence model equations are 

solved on a computational domain of variables ζ and η 

(transformed coordinates of the physical domain), by the use 

of finite volumes predictor-corrector. The new system of 

equations is solved by using MacCormack's explicit-implicit 

scheme [4]. This algorithm is second-order accurate in space 

and time. The basic discretization for the convective fluxes is 

modified to account for the physical properties of information 

propagation, as done initially by R. F. Cuffel, L. H. Back,andP. 

F. Massier [5]. The flux splitting is made second order 

accurate, but in shock regions where it is lowered to first order. 

The viscous terms are cantered and the axisymmetric source 

terms are integrated at the Centre of each control volume in 

both the ζ and η directional sweeps. To reach a steady-state 

solution with a minimum number of iterations, the explicit 

discretization is complemented with an implicit numerical [7] 

approximation which is free from stability conditions. 

 

 
 

Figure 1. Nozzle geometry  

 

 

4. VALIDATION  

 

The present model is compared with the results due to Back 

and al. [4]. As shown in Figures 2a and 2b, static to stagnation 

pressure ratio is in good agreement between the two works. 
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Figur 2a. Ratio of the pressure comparison between our 

works And that of Back and al. [4] 

 
 

 
 

Figure 2b. Ratio of the pressure comparison between our 

works and that of Back and al. [4] 

 

 

 

Figure 3. Contours of density (kg / m3)  

(Po=4 bar)  

 

Figure 3 shows the density profile (color change) that takes 

two different paths; the first surface from the entrance of the 

nozzle to its neck, the density in this part is almost constant at 

its maximum value. The second surface that begins just after 

the neck of the nozzle, the density undergoes a small increase 

and then continues to decrease until the exit of the nozzle. 

The pressure drop inside the nozzle is shown schematically 

in Figures 4a and 4b. qualitatively this profile follows almost 

the same form of density profile. 
 

 

 
 

 

Figure 4a. Contours of Static Pressure (pa)  

 

 
 

 

Figure 4b. Evolution of static pressure center and cell wall 

(Po=4 bar)  

 

 

 

Figure 5a. Contours of temperature (K)  

 

 
 

Figure 5b. Evolution of temperature center and cell wall (K) 

(Po=4 bar) 
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The temperature distribution and its evolution are shown 

respectively in Figs. 5a and 5b, the temperature in the middle 

of the nozzle is subject to a homogeneous and continuous 

descent until the exit.   

The wall is slightly reduced with a small increase in 

different inputs before exiting the nozzle (shock wave), on the 

other hand the proportion of fixed wall distribution along the 

nozzle due to the friction between flow and walls. 

 

 
 

Figure 6a. Contours of Mach number  

 
 

 
 

Figure 6b. Evolution of Mach number center and cell wall 

(Po=4 bar)  

 

The evolution of the Mach number on the centre and the 

wall of the nozzle shown in Figures 6a and 6b respectively, we 

observe that the regime at the inlet of the nozzle remains 

almost constant or invariable up to axis of the nozzle. We can 

say that the regime is subsonic (Ma <1). We can neglect the 

air compressibility for Mach numbers less than 0.3, because 

the value of the Mach number is strictly less than unity, then 

there is a sharp increase in the vicinity of the neck of the nozzle 

exactly between the first point of tangency at the convergence 

and the first point of tangency in the divergent. In this zone the 

regime becomes transonic (0.94 <Ma <1.2), because there is a 

small decrease on the centre of the nozzle. At the entrance of 

the diverging zone, the value of Mach number inside the 

nozzle continues to increase until the exit of the nozzle in this 

zone, the regime is hypersonic (Ma> 5). The same 

observations for the evolution of the Mach number except in 

parietal disturbance in the vicinity of the neck due to friction 

between the fluid and the wall. The convergent-divergent 

profile of the nozzle accelerates the gas from subsonic speed 

to supersonic speed that causes the displacement. 

 

 

5. CONCLUSION 

 

This computational result examined the effects of several 

parameters on the dynamic and thermal characteristics of flow 

through a cooled convergent-divergent nozzle. The 

computational results indicated the following:  

For an initial pressure, Po, inferior to the critical pressure, 

Pc, the delamination position is affected by this pressure 

difference and moves the nozzle throat. On the other hand, if 

the initial pressure is greater than the critical pressure, the 

release moves the lip of the nozzle until its disappearance 

which is desirable. Therefore, the delamination, which is an 

undesirable, phenomenon, appears in some flows, particularly 

when the initial pressure is below to the critical pressure. This 

could be causes the degradation of nozzle aerodynamic 

performances and efficiency and also causes noise and 

structure vibrations. So, in order to avoid these disadvantages, 

it is important to increase the initial pressure and make an 

optimal choice of the nozzle outlet angle. 
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NOMENCLATURE 

 

𝑘 turbulent kinetic energy 

𝜔 specific turbulent dissipation rate 

𝜇 dynamic viscosity 

𝜇t turbulent viscosity 

𝜌 density 

Ω scalar measure of the vortices tensor 

Ω𝑖𝑗 vortices tensor 

𝛾 specific heat ratio 

𝑎1 brdshow constant 
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𝑟 radius, radial coordinate, recovery factor 

𝑥 axial coordinate 

𝑇 Temperature 

𝑀𝑎 Mach number 

𝑃 Pressure 

𝑃𝑟𝑡  turbulent Prandtl number 
 

𝑈𝑖 

𝑢𝑖 

mean velocities 

fluctuating velocities 

ℎ heat transfer coefficient 

𝑃𝑟 Prandtl number 

𝑒 free stream condition 

𝐹1, 𝐹2 auxiliary functions in turbulence model 

𝑡 Time 

 

Subscripts 

 

0 nozzle entrance condition 

𝑡ℎ throat position 

𝑠𝑒𝑝 separation position 

𝑤 parameters on the wall surface 

𝑎𝑤 adiabatic wall 
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