Use of an intense ultra short laser pulse as an acoustical wide band source in a liquid medium

Use of an intense ultra short laser pulse as an acoustical wide band source in a liquid medium

Jean-Pierre Sessarego Régine Guillermin Amélie Jarnac Aurélien Houard Yohann Brelet Jérôme Carbonnel Yves-Bernard André André Mysyrowicz Dominique Fattaccioli 

Parc Berger, Avenue campagne Berger, Marseille 13009, France

Laboratoire de Mécanique et d’Acoustique CNRS - UPR 7051, 4 impasse Nikola Tesla, CS 40006, 13453 Marseille Cedex 13

LOA, Laboratoire d’Optique Appliquée, ENSTA Paris-Tech Ecole Polytechnique, CNRS, 828 Boulevard des Maréchaux 91762 Palaiseau cedex, France

DGA Techniques Navales Avenue de la Tour Royale, BP 40915, 83050 Toulon cedex, France

Corresponding Author Email: 
jp.sessarego@gmail.com
Page: 
95-111
|
DOI: 
https://doi.org/10.3166/TS.33.95-111
Received: 
11 May 2015
| |
Accepted: 
17 December 2015
| | Citation
Abstract: 

In this work the non-linear opto-acoustic problem which consists in generating an acoustic signal in water from an intense ultra short laser pulse has been studied. The acoustic source obtained could be related to the phenomenon of filamentation which produces a contraction of the initial beam accompanied by the formation of plasma. Relatively recent work has shown that lasers of this type could be used to produce remote acoustic sources with interesting applications to underwater acoustics. The spectrum of the sound source obtained was investigated and its directivity pattern in both planes (plane of the filament and plane perpendicular to the filament) was measured. The sound level of the source as a function of energy, duration, and wavelength of the laser pulse was also measured.

Keywords: 

femtoseconds laser, filaments, optical breakdown, non linear opto-acoustic, wide band acoustical source

Extended abstract
1. Introduction
2. Description du montage expérimental
3. Conclusion
Remerciements
  References

Bell C. E. et Maccabee B. S. (1974). Shock Wave Generation in Air and in Water by CO2 TEA Laser Radiation. Applied Optics, vol. 13, n° 3, p. 605-609.

Berthelot Y.H., etBusch-Vishniac I.J. (1985). Laser-induced thermoacoustic radiation. The Journal of the Acoustic Society of America, vol. 78, n° 6, p. 2074-2082.

Brelet Y., Jarnac A., Carbonnel J., André Y-B., Mysyrowicz A., Houard A., Fattaccioli D., Guillermin R. et Sessarego J-P. (2015).Underwater acoustic signals induced by intense ultrashort laser pulse. The Journal of the Acoustical Society of America Express letters, vol 137 (4), p.-288.

Bunkin F. V. et Komissarov V. M. (1973). Optical excitation of sound waves. Sov. Phys.

Acoust. 19(3), p. 203-211.

Chotiros N. P. (1985). Underwater sound generation by a high-intensity laser pulse. The Journal of the Acoustical Society of America, vol. 78, n° S1, p. S26.

Chotiros N. (1988). Nonlinear optoacoustic underwater sound source, Actes du  colloque SPIE, San diego, CA, USA.

Egerev S. V. (2003). In search of a noncontact underwater acoustic source. Acoust. Phys. 49, p. 51-61.

Gorodetskii V.S., Egerev S.V., Esipov I.B., et Naugol’nykh K.A. (1978). Generation of sound by laser pulses. Sov. J. Quantum Electron, 8(11) November 1978, p. 1345-1347.

He H., et Feng S. (2002). Observation on laser-induced lens effect in sound generation under water using high-power ultrashort-pulse laser. Proc. SPIE vol. 4631, p. 280-283, “Gas and Chemical Lasers and Intense Beam Applications III”, Steven J. Davis; Michael C. Heaven, Eds. A, 2002.

Jones T.G., Grun J., et Manka C. (1999). Feasibility Experiments for Underwater Shock and Bubble Generation with a High-Power Laser. Naval Research Laboratory Technical Report, NRL/MR/6790-99-8317, April 1999.

Jones T.G., Brun J., Bibee D., Manka C., Landsberg A., et Tam D. (2003). Laser-generated shocks and bubbles as laboratory-scale models of underwater explosions, Shock and Vibration, vol.10, p. 147-157.

Jones T. G., Ting A., Penano J., Sprangle P., et DiComo G. (2006). Remote underwater ultrashort pulse laser acoustic source. CThA1, Actes du colloque Conference on Lasers and Electro-Optics/Conference on Quantum Electronics and Laser Science, Long Beach Californie, USA.

Jones T. G., Ting A., Penano J., Sprangle P., et Bibee L. D. (2007). Remote intense laser acoustic source. NRL Rev., p. 121-123.

Lauterborn W. et Vogel A. (2013). Shock wave emission by laser generated bubbles, in Bubble Dynamics and Shock waves, Springer Berlin Heidelberg, p. 67-103.

Maccabee B.S. (1987). Laser Induced Underwater Sound. Actes du colloque Ultrasonics Symposium, Denver, Colorado, USA.

McGhee J. R. (2008). Investigation of the Acoustic Source Characteristics of High Energy Laser Pulses. Thesis, Naval Postgraduate School, Monterey, California.

Naugolnykh K.A., Egerev S.V., Esipov I.B., et Matveev K.A. (1999). Nonlinear propagation of laser generated sound pulses in a water and granular medium. J. Acoust. Soc. Am. 106 (6), p. 3135-3142.

Pierce A.D., Hsieh H.A. (1986). Underwater sound beams created by airborne laser systems, Actes du colloque ICA Associated symposium on Underwater Acoustics, Halifax (Canada).

Potemkin F. V., Mareev E. I., Podshivalov A. A., et Gordienko V. M. (2014). Laser control of filament induced shock wave in water, Laser Phys. Lett. 11, 106001.

Potemkin F. V., Mareev E. I., Podshivalov A. A. et Gordienko V. M. (2015). Highly extended high density filaments in tight focusing geometry in water: from femtoseconds to microseconds, New J. Phys. 17, 053010.

Saleh B.E.A et Teich M.C. (2007). Fundamentals of photonics, J. Wiley & Sons, Inc. 2nd edition.

Schaffer C. B., Nishimura N., Glezer E. N., Kim AM.-T., et Mazur E. (2002). Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds, Optics Express vol. 10, n° 3.

Sessarego J.-P., Guillermin R., Jarnac A., Houard A., Brelet Y., Carbonnel J., André Y.B., Mysyrowicz A., et Fattaccioli D. (2013). A femrosecond laser as an acoustic source for underwater acoustic applications, Actes du colloque UACE, Corfou, Grèce.

Vogel A., Linz N., Freidank S., et Paltauf G. (2008). Femtosecond-laser-induced nanocavitation in water: Implications for optical breakdown threshold and cell surgery, Phys. Rev. Lett. 100, 038102.

Vogel A., Noack J., Nahen K., Theisen D., Busch S., Parlitz U., Hammer D. X., Noojin G. D., Rockwell B. A., et Birngruber R. (1999). Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, p. 271-280.