Restitution 3D de monuments historiques à partir de plans anciens

Restitution 3D de monuments historiques à partir de plans anciens

Christophe Riedinger Hedi Tabia  Michel Jordan 

ETIS, UMR8051 ENSEA – Université Cergy-Pontoise – CNRS, France

Corresponding Author Email: 
{christophe.riedinger,hedi.tabia}@ensea.fr,michel.jordan@u-cergy.fr
Page: 
87-108
|
DOI: 
https://doi.org/10.3166/TS.32.87-108
Received: 
27 February 2014
| |
Accepted: 
10 March 2015
| | Citation

OPEN ACCESS

Abstract: 

In this paper, we present a complete set of algorithms for analyzing old ground plans of historical monuments, in order to build a 3D restitution of the corresponding monument. First, some image processing algorithms are used to analyze ground plans and extract a lot of informations such as thick and thin walls, openings, etc. The 3D model is then build by extruding the ground plans, and refined by adding textures from cut-offs and elevation images of the same collection of old plans. We applied our algorithms to ground plans of the Château de Versailles (XVIIIst century), providing us 3D models of two parts of the castle.

RÉSUMÉ

Dans cet article, nous présentons un ensemble d’algorithmes permettant l’analyse automatique de plans d’architecte anciens, afin d’élaborer une restitution 3D des bâtiments correspondants. Divers algorithmes de traitement des images permettent d’extraire un ensemble d’informations pertinentes des plans au sol (par exemple, murs principaux, cloisons, emplacement des ouvertures). Le modèle 3D correspondant est construit par extrusion sur la base du plan au sol, et affiné par l’adjonction de textures issues d’images d’élévation ou de coupes présentes dans les mêmes collections de plans anciens. Ces outils ont été appliqués à des plans du XVIIIe siècle du Château de Versailles, permettant d’obtenir une reconstruction 3D en particulier de deux sites du Château.

Keywords: 

3D restitution, plans, architecture, cultural heritage, history, mathematical morphology

MOTS-CLÉS

reconstruction 3D, plans, architecture, patrimoine, histoire, morphologie mathématique

1. Introduction
2. Analyse 2D Des Plans Numérisés
3. Restitution 3D
4. Résultats
5. Conclusion Et Perspectives
  References

Beaton A., Tukey J. (1974). The fitting of power series, meaning polynomials, illustrated on bandspectroscopic data. Technometrics, vol. 16, p. 147–185.

Cluny numérique. (s. d.). (http://cluny-numerique.fr/gunzo/restitution-archeologique/cluny-iii)

Cosmas J., Itegaki T., Green D., Grabczewski E., Weimer F., Van Gool L. (2001). 3D MURALE: A Multimedia System for Archaeology. In Proceedings of the 2001 conference on virtual reality, archeology, and cultural heritage, p. 297–306. Glyfada, Greece, ACM.

Dosch P., Tombre K., Ah-Soon C., Masini G. (2000). A complete system for the analysis of architectural drawings. International Journal on Document Analysis and Recognition, vol. 3, no 2.

Fabbri R., Costa L. D. F., Torelli J. C., Bruno O. M. (2008, février). 2d euclidean distance transform algorithms: A comparative survey. ACM Comput. Surv., vol. 40, no 1, p. 2:1–2:44. Consulté sur http://doi.acm.org/10.1145/1322432.1322434

Guo Z., Zhang L., Zhang D. (2010a, juin). A completed modeling of local binary pattern operator for texture classification. IEEE Trans. on Image Processing, vol. 19, no 6.

Guo Z., Zhang L., Zhang D. (2010b). Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognition, vol. 43, no 3, p. 706–719.

Horna S., Damiand G., Meneveaux D., Bertrand Y. (2007, mars). Building 3D indoor scenes topology from 2D architectural plans. In GRAPP, p. 37–44. Spain. Consulté sur https://hal.archives-ouvertes.fr/hal-00337793

Huang C., Mitchell O. (1994). A euclidean distance transform using grayscale morphology decomposition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 16, no 4, p. 443-448.

Landrieu J., Père C., Rollier-Hanselmann J., Schotte G. (2010). Reconstitution virtuelle de l’église abbatiale Cluny III: des fouilles archéologiques aux algorithmes de l’imagerie. In Actes du colloque virtual retrospect 2009, p. 151–159. Pessac, France, Ausonius éd.

Lewis R., Séquin C. (1998). Generation of 3D building models from 2D architectural plans. Computer-Aided Design, vol. 30, no 10, p. 765–779. Consulté sur http://www.sciencedirect.com/science/article/pii/S0010448598000311

Lu T., Yang H., Yang R., Cai S. (2007). Automatic analysis and integration of architectural drawings. International Journal of Document Analysis and Recognition (IJDAR), vol. 9, no 1, p. 31–47.

Or S.-H., Wong K., Yu Y.-k., Chang M. M.-y., Kong H. (2005). Highly Automatic Approach to Architectural Floorplan Image Understanding & Model Generation. In Proceedings of Vision, Modeling and Visualization, VMV’2005. Erlangen, Germany.

Remondino F. (2011). Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sensing, vol. 3, no 6, p. 1104–1138. Consulté sur http://www.mdpi.com/2072-4292/3/6/1104

Ren J., Jiang X., Yuan J. (2013). Noise-Resistant Local Binary Pattern With an Embedded Error-Correction Mechanism. IEEE Trans. on Image Processing, vol. 22, no 10, p. 4049-4060.

Soille P. (2003). Morphological image analysis: Principles and applications (2e éd.). Secaucus, NJ, USA, Springer-Verlag New York, Inc. Three dimensional monuments, programme national de numérisation du patrimoine. (s. d.). (http://www.map.archi.fr/3D-monuments/)

Tingdahl D., Vergauwen M., Van Gool L. (2011). Arc3d: A public web service that turns photos into 3d models. Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks, p. 101.

Tong L., Chiew-Lan T., Feng S., Shijie C. (2005). A new recognition model for electronic architectural drawings. Computer-Aided Design, vol. 37, no 10, p. 1053 - 1069. Consulté sur http://www.sciencedirect.com/science/article/pii/S0010448504002258

Van De Ville D., Kocher M. (2009). Sure-based non-local means. Signal Processing Letters, IEEE, vol. 16, no 11, p. 973-976.

Van Gool L., Sablatnig R. (2006). Special issue on 3d acquisition technology for cultural heritage. Machine Vision and Applications, vol. 17, no 6, p. 347-348. Consulté sur http://dx.doi.org/10.1007/s00138-006-0042-2

Xuetao Y., Wonka P., Razdan A. (2009). Generating 3D Building Models from Architectural Drawings: A Survey. Computer Graphics and Applications, IEEE, vol. 29.

Yastikli N., Emem O., Alki V. (2003). 3D model generation and visualization of cultural heritage. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV-5/C15, p. 1682-1777.