Improving optical burst switching networks (OBS) performance by adjusting maximum burst size and burstification time

Improving optical burst switching networks (OBS) performance by adjusting maximum burst size and burstification time

Reza PoorzareAli Poorzare Siamak Abedidarabad 

Young Researchers Club, Ardabil Branch, Islamic Azad University, Ardabil 561575675, Iran

Ardabil Branch, Islamic Azad University, Ardabil 561575675, Iran

Corresponding Author Email: 
rezapoorzare@gmail.com
Page: 
1-6
|
DOI: 
https://doi.org/10.18280/rces.050101
Received: 
23 January 2018
| |
Accepted: 
19 March 2018
| | Citation

OPEN ACCESS

Abstract: 

Because Optical Burst Switching (OBN) networks don’t have buffers it leads to problems like burst lost and burst contention when arriving at the destination. These problems downgrade OBS networks performances. When traffic of the network is not heavy burst contention can happen, but when it happens the network thinks the traffic is heavy and it decreases the rate of sending bursts when it’s not necessary. Another important factor in our paper is Packet Delivery Ratio (PDR). Packet loss can happen in two ways in the network: one is because of heavy load and the other one is because of burst contention. In this paper we adjust the burst size and burst creation time to improve the performance of the OBS network. We simulate our algorithm in NS-2 then compare it with another scheme.

Keywords: 

burst size, burstification time, optical burst switching, Transport Control Protocol (TCP)

1. Introduction
2. TCP Vegas
3. Obtaining Best Maximum Burst Size and Burstification Time
4. Comparing Our Scheme with Another Method
5. Conclusion
  References

[1] Floyd S. (2002). Quick-start for TCP and IP. Internet draft, draft-amit-quick-start-02.txt.

[2] Jin C, Wei D, Low S. (2004). FAST TCP: motivation, architecture, algorithms, performance. In: Proceedings, IEEE Infocomm. Hong Kong, China.

[3] Hegde S, et al. (2004). FAST TCP in high-speed networks: An experimental study. In: Proceedings. GridNets, San Jose, CA. 

[4] Xu L, Harfoush K, Rhee I. (2004). Binary increase congestion control (BIC) for fast long-distance networks. In: Proceedings, IEEE Infocomm. Hong Kong, China.

[5] Stevens W. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. RFC 2001.

[6] Mathis M, Mahdavi J, Floyd S, Romanow A. (1996). TCP selective acknowledgement options, RFC 2018.

[7] Brakmo L, Peterson L. (1995). TCP Vegas: end-to-end congestion avoidance on a global internet, IEEE Journal on Selected Areas in Communications 13(8):1465-1480.

[8] Katabi D, Handley M, Rohrs C. (2002). Congestion control for high bandwidth-delay product networks. In: Proceedings, ACM SIG-COMM. Pittsburgh, PA.

[9] Jin C, Wei D, Low S. (2004). FAST TCP: Motivation, architecture, algorithms, performance, Infocom 2004. Twenty-Third AnnualJoint Conference of the IEEE Computer and Communications Societies 4. 

[10] Hegde S, et al. (2004). FAST TCP in high-speed networks: an experimental study. In: Proceedings. GridNets, Engineering & Applied Science, Caltech, the First International Workshop on Networks for Grid Applications.

[11] Stevens W. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms, RFC. 

[12] Mathis M, Mahdavi J, Floyd S, Romanow A. (1996). TCP selective acknowledgement options, RFC. 

[13] Brakmo L, Peterson L. (1995). TCP Vegas: End-to-end congestion avoidanceon a global internet. IEEE Journal on Selected Areas in Communication. 

[14] Katabi D, Handley M, Rohrs C. (2002). Congestion control for high bandwidth-delay product networks. ACM SIGCOMM Computer Communication, PA. 

[15] Óscar González de Dios, Ignacio de Miguel, Ramón J. Durán, Juan Carlos Aguado2, Noemí Merayo2, PatriciaFernández (2012). Impact of TCP synchronization on capacity dimensioning of Optical Burst Switched (OBS) links, Networks and Optical Communications (NOC). 

[16] Wang YW. (2002). Using TCP congestion control to improve the performance of Optical Switched Networks, Communications, 2003. ICC '03. IEEE International Conference 2. 

[17] Yu X, Qiao C, Liu Y. (2004). TCP implementations and false time out detection in OBS networks, Infocom. 

[18] Zhang Q, Vokkarane V, Wang Y, Jue JP. (2005). Analysis of TCP over optical burst-switched networks with burst retransmission. In: Proceedings, IEEE GLOBECOM, St. Louis, MO. 

[19] Zhang Q, Vokkarane V, Wang Y, Jue JP. (2005). Evaluation of burst retransmission in optical burst-switched networks. In: Proceedings, 2nd International Conference on Broadband Networks. Boston, MA. https://doi.org/10.1109/ICBN.2005.1589624.

[20] Hsu C, Liu T, Huang N. (2002). Performance analysis of deflection routingin optical burst-switched networks, INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE 1, New York, NY. 

[21] Shihada B, Zhang Q, Ho PH, Jue JP. (2010). A novel implementation of TCP vegas for optical burst switched networks. Optical Switching and Networking.

[22] Yu X, Qiao C, Liu Y. (2004). TCP implementations and false time out detection in OBS networks. In: Proceedings, IEEE Infocomm, Hong Kong, China.

[23] Mo J, La R, Anantharam V, Walrand J. (1999). Analysis and comparison of TCP Reno and Vegas. INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE 3. 

[24] Weigle E, Feng W. (2001). A case for TCP Vegas in high-performance com-putational grids. In: Proceedings, 10th IEEE International Sympo-sium High Performance Distributed Computing, San Francisco. CA.

[25] Shihada B, Ho PH, Hou F, Jiang XH, et al. (2006). BAIMD: A Responsive Rate Control for TCP over Optical Burst Switched (OBS) Networks, Communications, 2006. ICC '06. IEEE International Conference 6. https://doi.org/10.1109/ICC.2006.255163. 

[26] Peng SP, Li ZB, Wu XL, Xu AS. (2007). TCP window based dynamic assembly period in optical burst switching network, communications, 2007. ICC '07. IEEE International Conference on. 

[27] Raffaelli C, Zaffoni P. (2006). Simple analytical formulation of the TCP send rate in optical burst-switched networks, computers and communications, 2006. ISCC '06. Proceedings. 11th IEEE Symposium on. 

[28] Jayaraj A, Venkatesh T, Murthy CSR. (2008). Loss classification in optical burst switching networks using machine learning techniques: Improving the performance of TCP. 

[29] Shihada B, Zhang Q, Ho PH. (2006). Threshold-based TCP vegas over optical burst switched networks, computer communications and networks, 2006. ICCCN 2006. Proceedings.15th International Conference. 

[30] Pleich R, Siemens AG, Munich, Germany, de Vega Rodrigo, M, Gotz J. (2005). Performance of TCP over optical burst switching networks, Optical Communication, 2005. ECOC 2005. 31st European Conference 4. 

[31] Zhang Q, Vokkarane VM, Wang YK, Jue JP. (2005). Analysis of TCP over optical burst-switched networks with burst retransmission. Global Telecommunications Conference. GLOBECOM '05. IEEE 4. https://doi.org/10.1109/GLOCOM.2005.1578012.

[32] Bimal V, Venkatesh T, Murthy CSR. (2007). A markov chain model for tcp newreno over optical burst switching networks. Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE. https://doi.org/10.1109/GLOCOM.2007.423 

[33] Zhu L, Ansari N, Liu J. (2005). Throughput of high-speed TCP in optical burst switching networks. Communications. IEE Proceedings 152(3).