Differential Sandwich Theorems Involving Linear Operator

Differential Sandwich Theorems Involving Linear Operator

Thamer Khalil MS. Al-KhafajiAsmaa KH. Abdul-Rahman Lieth A. Majed 

Department of Renewable Energy, College of Energy & Environmental Sciences, Al-Karkh University of Science, Baghdad 10011, Iraq

Department of Mathematic, College of Sciences, Diyala of University, Baquba 32001, Iraq

Corresponding Author Email: 
thamer.197675@yahoo.com
Page: 
989-993
|
DOI: 
https://doi.org/10.18280/mmep.090416
Received: 
3 January 2022
|
Revised: 
27 May 2022
|
Accepted: 
7 June 2022
|
Available online: 
31 August 2022
| Citation

© 2022 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

The current study is fully devoted to studying differential subordination and superordination theorems of analytic functions with some sandwich results involving linear operators $I_{s, a, \mu}^\lambda$. This operator was obtained by the Hadamard product with the family of integral operators and the Hurwitlz-Lerch Zeta function. The current results demonstrate the possibility and capability of extracting the Sandwich theorem, and the conclusion includes differential subordination and differential superordination.

Keywords: 

integral operator, univalent function, convex function, linear operator, sandwich theorem

1. Introduction

Through the integral operator, Cotirlă [1], obtained a sandwich theorem by different method. Recently, Shammugam et al. [2] and Goyal et al. [3] and Atshan [4], Atshan & HadiAbd [5], Ibrahim et al. [6], Atshan & Hussain [7], and Atshan & Jawad [8], studied sandwich theorems for another condition. Previous research established those differential subordinations and superordinations can be used to obtain adequate conditions to meet the sandwich implication of a large number of well-known sandwich theorems.

Let me use and called H=H() is the class of functions (analytic) in the disk $\nabla=\{z \in \mathbb{C}:|z|<1\}$ . $\forall n \in(+i n t e g e r)$. In addition, $a \in \mathbb{C}$. Now, we define H [a, n] is the subclass of H. H [a, n] include the shape:

$\mathcal{F}(z)=a+a_n z^n+a_{n+1} z^{n+1}+(a$ belong to $\mathbb{C})$  (1)

Too, suppose φ subclass of H include of the functions in the shape:

$\mathcal{F}(z)=z+\sum_{n=2}^{\infty} a_n z^n$       (2)

Let $F, g$ belong to $\varphi$. The function $f$ is called subordinate to $g$, or $g$ is called superordinate to $\mathcal{F}$, if $\exists$ schwarz analytic function in $\nabla$ is $w$, with zero= $w($ zero $)$ and the absolute value of $w(z)$ less than $1,(z \in \nabla)$ s.t $\mathcal{F}(z)$ equal $g(w(z))$. we shall write $\mathcal{F} \prec g$.

If $g$ is univalent in $\nabla$, then $\mathcal{F} \prec g$ iff $F$ (zero) $=g($ zero $), \mathcal{F}(\nabla)$ is subset of $g(\nabla)$.

Now: Suppose $h, p \in H$ and $\psi(r, \lambda, t ; z): \mathbb{C}^3 \times \nabla \longrightarrow \mathbb{C}$. If the variable $p$ and the set of concepts $\psi\left(p(z)\right.$ and $z p^{\prime}(z)$ plus $\left.z^2 p^{\prime \prime}(z) ; z\right)$ are function univalent in the disk $\nabla$ in addition if $p$ in the shape the 2 nd-order superordinations.

$h(z)<\psi\left(p(z), z p^{\prime}(z)\right.$ and $\left.z^2 p^{\prime \prime}(z): z\right)$     (3)

So, p gives title a solution of the superordination of (3). (If f is subordinate to g, then g is superordinate to f). Now An analytic q is said to be a subordinant of (3), if  $\mathfrak{q} \prec p \forall$ the functions p satisfies (3). Now  $\tilde{q}$ univalent subordinant have the property $\mathrm{q} \prec \tilde{\mathrm{q}}$,∀ differential subordinants q of (3) is known the best subordinant. The two researchers Miller & Mocanu [9] they own set on the analytic h; q and ψ by the set of concepts:

$\begin{aligned} h(z) \prec \psi\left(p(z), z \frac{d p}{d z}, z^2 \frac{d^2 p}{d z^2}(z) ; z\right) & \Rightarrow \mathbb{q}(z)  \prec p(z) \end{aligned}$     (4)

Komatu [10] gave the family of integral operator:

$J_\mu^\lambda: \Sigma \rightarrow \Sigma$.

Define as follows:

$J_\mu^\lambda \mathcal{F}(z)=z+\sum_{n=1}^{\infty}(\mu / n+\mu-1)^\lambda a_n z^n$

$(z$ belong to $\nabla, n>1, \lambda \geq 0)$

By function Hurwitlz-Lerch Zeta:

$\phi(z, s, a)=\sum_{n=0}^{\infty} \frac{z^k}{(k+a)^s}, a \in \mathbb{C} / z_0^{-}, s \in \mathbb{C}$ when $0<|z|$

greater than 1

Using convolution where $G_{s, a(z)}$ by:

Then a linear operator $\mathrm{I}_{\mathrm{s}, \mathrm{a}, \mu}^\lambda \mathcal{F}(z): \Sigma \rightarrow \Sigma[11]$ is defined:

$I_{s, a, \mu}^\lambda \mathcal{F}(z)=G_{s, a(z)} * J_\mu^\lambda f(z)$    (5)

$=z+\sum_{n=2}^{\infty}\left(\frac{1+a}{k+a}\right)^s\left(\frac{\mu}{\mu+n-1}\right)^\lambda a_n z^n$     (6)

From Eq. (6) get:

$z\left(I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)\right)^{\prime}=\mu I_{s, a, \mu}^\lambda \mathcal{F}(z)-(\mu-1) I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)$     (7)

AL-Ameedee et al. [12] got conditions for the concepts certain analytic.

$\mathbb{q}_1(z) \prec z \mathcal{F}^{\prime}(z) / \mathcal{F}(z)<\mathbb{q}_2(z)$

where, $\mathbb{q}_1$ and $\mathfrak{q}_2$ are univalent in $\nabla$ in addition $\mathbb{q}_1($ zero $)=$ $\mathfrak{q}_2($ zero $)=1$.

The fundamental objective our research is to find some properties of normalized analytic functions $\mathcal{F}$ like sufficient condition.

$\mathbb{q}_1(z)<\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma<\mathbb{q}_2(z)$

And:

$\mathrm{q}_1(z) \prec\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma \prec \mathrm{q}_2(z)$

We got univalent functions $q_1$ and $q_2$ in $\nabla$ with, $1=$ $\mathbb{q}_2(0)=\mathbb{q}_1(0)$

In the next step, we need some basic information [13-20].

2. Definitions and Preliminaries

Definition (1) [13]. The set functions $\mathcal{F}$ Denote by $\mathrm{Q}$, is analytic and one to one $\bar{\nabla} \backslash E(\mathcal{F})$, where $\bar{\nabla}=\nabla \cup\{z \in \partial \nabla\}$ and $\mathrm{E}(\mathcal{F})=$ $\left\{\zeta \in \partial \nabla: \operatorname{limit}_{z \rightarrow \zeta} \mathcal{F}(z)=\infty\right\}$ s.t

$\mathcal{F}^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \nabla \backslash E(\mathcal{F})$.

$\mathcal{F}(z)=a$, then: $Q$ (zero $)=Q_0$ and $Q($ one $)=Q_1=\{\mathcal{F} \in Q: \mathcal{F}(0)=1\}$.

Lemma (1)[13]. In $\nabla$ suppose be univalent and suppose $\theta$ in addition $\phi$ analytic function in $D$ consists of $q(D)$ and $0 \neq \phi(w)$ such that $w \in q(\nabla) . z \mathrm{q}^{\prime}(z) \phi(\mathrm{q}(z))=Q(z)$ and $h(z)=\theta(\mathrm{q}(z))+Q(z)$. let:

i. $\nabla$ contains the starlike univalent function $Q(z)$.

ii. $\operatorname{Re}\left\{h^{\prime}(z) z / Q(z)\right\}$ greater than $0, \forall z$ belong to $\nabla$.

If the analytic function $\mathrm{p}$ in $\nabla$, too $\mathrm{p}($ zero $)=\mathrm{q}$ (zero), $p(D)$ sub set $D$,

$\theta(p(z))$ plus $z p^{\prime}(z) \phi(p(z)) \prec \theta(\mathrm{q}(z))$ plus $z \mathrm{q}^{\prime}(z) \phi(\mathrm{q}(z))$

So $\mathfrak{q}$ is the best dominant in addition $q \prec$ qu."

Lemma (2)[14]. Suppose the convex univalent function in $\nabla$ is $q$ in addition let $\alpha$ belong to $c, \beta$ belong to $C \backslash\{z e r o\}$ and:

$\operatorname{Re}\left\{\left(z \mathrm{q}^{\prime \prime}(z) / \mathrm{q}^{\prime}(z)\right)+1\right\}$

greater than $\max \left\{\right.$ zero, $\left.-\operatorname{Re}\left(\frac{\alpha}{\beta}\right)\right\}$

then:

$\alpha p(z)+\beta z p^{\prime}(z) \prec \alpha \mathrm{q}^{(z)}+\beta z q^{\prime}(z)$,

So, the function is the best dominant in addition $p \prec q$.

Lemma (3) [14]. Let the convex univalent function in $\nabla$ is $\mathrm{q}$ in addition suppose $\beta$ belong to $C$. In addition, suppose that $\operatorname{Re}(\beta)>$ zero. If the function $p \in H[\mathrm{q}($ zero $), 1]$ intersection with $Q$ and the univalent in $\nabla$ is $p(z)$ plus $\beta z p^{\prime}(z)$ when:

$\mathrm{q}(z)+\beta z \mathrm{q}^{\prime}(z) \prec p(z)$ plus $\beta z p^{\prime}(z)$

i.e., the function $q$ is the best subordinant and $\mathrm{q} \prec p$.

Lemma (4) [8]. Suppose the convex univalent function in $\nabla$ is $q$ in addition suppose $\phi$ and $\theta$ are analytic function in $\mathrm{D}$ contains $q(\nabla)$. Then, suppose:

(1) Real $\left\{\theta^{\prime}(\mathrm{q}(z)) \div \phi(\mathrm{q}(z))\right\}$ greator than zero, $\forall$ complex variable $z$ belong to $\nabla$.

(2) the function $Q(z)$ equal $z \mathrm{q}^{\prime}(z)$ product $\phi(q(z))$ is function univalent star like in $\nabla$.

If $p$ belong to $Q \cap H[q(z e r o), 1]$, in addition $p(\nabla)$ subset $D, \theta(p(z))$ plus $\lambda p^{\prime}(z) \phi(p(z))$ is univalent function in unit disk.

$\theta(\mathrm{q}(z))$ plus $z \mathrm{q}^{\prime}(z) \phi(q(z)) \prec \theta(p(z))$ plus $z p^{\prime}(z)$ product $\phi(p(z))$

then, $\mathrm{q}<p$ and the function $q$ satisfy the best subordinate.

Theorem (1). Let the convex univalent in $\nabla$ is $q$ with $1=q($ zero $), 0 \neq \varepsilon \in c, \gamma$ greater than to zero and let $q$ satisfies

$\operatorname{Real}\left\{\left[z \mathrm{q}^{\prime \prime}(z) / \mathrm{q}^{\prime}(z)\right]+1\right\}>\operatorname{maximmum}\left\{\operatorname{Zero},-\operatorname{Real}\left(\frac{\gamma}{\varepsilon}\right)\right\}$    (8)

when, $\mathcal{F} \in \varphi$ satisfies the subordination,

$(1-\varepsilon \mu)\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right) \prec \mathrm{q}(z) p l u s \frac{\varepsilon}{\gamma} z q^{\prime}(z)$     (9)

then,

$\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma \prec q(z)$     (10)

and the "best dominant of $(9)$ is q.

Proof. $p$ defined as follows:

$p(z)=\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma$     (11)

By purely mathematical operations for condition (11) with respect to z.

$z p^{\prime}(z) / p(z)=\gamma\left(-1+\frac{z\left(l_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)\right)^{\prime}}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)$     (12)

Then, obtain the following subordination in view of (7).

$p^{\prime}(z) /_{p(z)}=\gamma\left(\mu\left(-1+\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)+\left(-1+\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)\right)$

Therefore,

$\frac{z p^{\prime}(z)}{\gamma}=\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\mu\left(-1+\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)+\left(-1+\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)\right)$

from the hypothesis the subordination (9) becomes:

$p(z) p$ lus $\frac{\varepsilon}{\gamma} z p^{\prime}(z)<\mathrm{q}(z) p \operatorname{lus} \frac{\varepsilon}{\gamma} z \mathrm{q}^{\prime}(z)$

we obtain (10) by application of (Lemma (2)) with $\beta=\frac{\varepsilon}{\gamma}$ and $\alpha=1$,

Corollary (1). Let $0 \neq \varepsilon \in \mathbb{C}, \gamma>0$ and:

$\operatorname{Re}\left\{\frac{2 z}{-z+1}+1\right\}>\max \left\{\right.$ zero, $\left.-\operatorname{Real}\left(\frac{\gamma}{\varepsilon}\right)\right\}$

If $\mathcal{F} \in \varphi$ got the subordination:

$(1-\varepsilon \mu)\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right) \prec\left(\frac{1-z^2+2 \frac{\varepsilon}{\gamma} z}{\left(1-z^2\right)}\right)$

So, $\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma$ subordinat to (z plus $1 / \mathrm{z}$ minus 1 ).

In addition, $q(\mathrm{z})$ equal $(\mathrm{z}+1 / \mathrm{z}-1)$ is the perfect dominant.

Theorem (2). Suppose the convex univalent in $\nabla$ is $q$ in addition $1=q($ zero $)$, zero not equal $q(\mathrm{z})$, $(\mathrm{z}$ belong to $\nabla$) and suppose:

$\operatorname{Re}\left\{1-\frac{\gamma}{\varepsilon}+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0$     (13)

where, $\varepsilon>0, \varepsilon \in C \backslash\{$ zero $\}$ and $z \in \nabla$.

Let the starlike univalent in $\nabla$ is $\left(-\varepsilon z \mathrm{q}^{\prime}(z)\right)$. If $\mathcal{F} \in \varphi$ then:

$\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \varepsilon ; z) \prec \gamma q(z)-\varepsilon z \mathrm{q}^{\prime}(z)$    (14)

where,

$\begin{aligned} \emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \varepsilon ; z)=& \gamma\left(\frac{\mathrm{t}_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma-\\ & \gamma \varepsilon\left(\frac{\left.\mathrm{I}_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)\right)}{z}\right)^\gamma\left(-1+\frac{\left.\mathrm{t} I_{s, a, \mu}^\lambda \mathcal{F}(z)\right)+(1-\mathrm{t}) I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{\left.\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+I_{s, a, \mu}^\lambda \mathcal{F}(z)\right)}\right) \end{aligned}$     (15)

then,

$\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma \prec \mathrm{q}(z)$     (16)

and the best dominant of $(14)$ is $q(z)$.

Proof: Now we will start defined $p$ :

$p(z)=\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma$    (17)

Setting: $\emptyset(w)=-\varepsilon$ in addition $\theta(w)=\gamma w, w$ not equal to zero. Then, $\theta(w)$ and $\emptyset(w)$ is analytic in $\mathrm{C}$ with $\mathrm{C} /\{$ zero $\}$ respectively. So, $\emptyset(w)$ not equal to zero, $w$ belong to $\mathrm{C} /\{0\}$, then;

$z \mathrm{q}^{\prime}(z) \cdot \emptyset \mathrm{q}(z)=-\varepsilon z \mathrm{q}^{\prime}(z)=\mathrm{Q}(z)$

and

$\theta \mathrm{q}(z)$ plus $Q(z)$ equal $\gamma \mathrm{q}(z)-\varepsilon z \mathrm{q}^{\prime}(z)=\mathrm{h}(z)$

$Q(z)$ is a starlike univalent in $\nabla$

$\operatorname{Real}\left\{\frac{z \mathrm{~h}^{\prime}(z)}{\mathrm{Q}(z)}\right\}=\operatorname{Real}\left\{1-\frac{\gamma}{\varepsilon}+\frac{z \mathrm{q}^{\prime \prime}(z)}{\mathrm{q}^{\prime}(z)}\right\}>0$.

and, obtain:

$\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z)=\gamma \mathrm{p}(z)-\varepsilon \mathrm{zp}^{\prime}(z)$   (18)

So, $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z)$ is given by (15).

By (14) with (18), we own:

$\gamma \mathrm{p}(z)-\varepsilon z \mathrm{p}^{\prime}(z) \prec \gamma q(z)-\varepsilon z q^{\prime}(z)$     (19)

Therefore, got $\mathrm{p}(z) \prec \mathrm{q}(z)$ by (Lemma (1)), and by using (17).

Corollary (2):

Let, Real $\left\{1-\frac{\gamma}{\varepsilon}+\frac{z 2 \mathrm{~B}}{(1+\mathrm{B} z)}\right\}>0$, and $-1 \leq \mathrm{B}<\mathrm{A} \leq 1$. where $\varepsilon$ belong to $\mathrm{C} /\{$ zero $\}$ in addition $z$ be long to $\nabla$, if $\mathcal{F} \in \varphi$ such that:

$\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z) \prec\left(\gamma\left(\frac{1+\mathrm{A} z}{1+\mathrm{B} z}\right)-\varepsilon z \frac{\mathrm{A}-\mathrm{B}}{(1+\mathrm{B} z)^2}\right)$

and $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z)$ is given by condition $(8)$,

$\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma \prec \frac{\mathrm{A} z+1}{\mathrm{Bz}+1}$

and the perfect dominant is $\mathrm{q}(z)=\frac{1+\mathrm{A} z}{1+\mathrm{B} z}$

Theorem (3): suppose the convex univalent in $\nabla$ is $q$ in addition $\gamma$ greator than zero, $q(0)=1$ and $\operatorname{Re}\{\varepsilon\}>0$.

Suppose that $\mathcal{F} \in \varphi$ satisfies: $\left(\frac{\left.I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)\right)}{z}\right)^\gamma \in \mathrm{Q}$ intersect $H[q(0), 1]$, so,

$(1-\varepsilon \mu)\left(\frac{I_{S, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{S, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)$

is univalent function in $\nabla$

if $\mathrm{q}(z)+\frac{\varepsilon}{\gamma} z \mathrm{q}^{\prime}(z) \prec(1-\varepsilon \mu)\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)$     (20)

then,

$\mathrm{q}(z)<\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma$  (21)

the best subordinant of (20) is q

Proof: p defined as follows:

$\mathrm{p}(z)=\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma$     (22)

Now we get (22) by differentiating:

$z p^{\prime}(z) / p(z)=\delta\left(\frac{z\left(I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)\right)^{\prime}}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}-1\right)$    (23)

Using (7) in (23), we obtain:

$(1-\varepsilon \mu)\left(\frac{I_{S, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{S, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{S, a, \mu}^\lambda \mathcal{F}(z)}{I_{S, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)=\mathrm{q}(z)+\frac{\varepsilon}{\gamma} z \mathrm{q}^{\prime}(z)$

we get the result by using (Lemma (3)).

Corollary (3): If $\mathcal{F} \in \varphi$ satisfies: $\left(\frac{\left.I_{S, a, \mu}^{\lambda+1} \mathcal{F}(z)\right)}{z}\right)^\gamma \in Q \cap H[\mathbb{Q}(0), 1]$ and let $\gamma>0$ and $\operatorname{Re}\{\varepsilon\}>0$.

and,

$(1-\varepsilon \mu)\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)$

be univalent in $\nabla$. If

$\frac{1-z^2+2 \frac{\varepsilon}{\gamma} z}{\left(1-z^2\right)} \prec(1-\varepsilon \mu)\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)$

then,

$\left(\frac{1+z}{1-z}\right) \prec\left(\frac{\left.I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)\right)}{z}\right)^\gamma$

and the best subordinant is $q(\mathrm{z})$ equal $\frac{1+z}{1-z}$.

Theorem (4): Let the convex univalent in $\nabla$ is $q$ in addition $1=q($ zero $)$, and let $q$ satisfies:

$\operatorname{Re}\left\{\frac{-\gamma \mathrm{q}^{\prime}(z)}{\varepsilon}\right\}>0$     (24)

"Let- $\gamma \mathrm{zq}$ ' $(\mathrm{z})$ " is a starlike univalent function "in $\nabla$ and let $\mathcal{F} \in \varphi$ satisfies: " $\left(\frac{\left.\mathrm{t} \mathrm{I}_{s, a, \mu}^{\hat{H},+} \mathcal{F}(z)+(1-\mathrm{t})\right)_{I_{s, a, \mu}^{\hat{H}}} \mathcal{F}(z)}{z}\right) \in \mathrm{Q} \cap$ $\mathrm{H}$ [q (zero), 1], "and $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; \mathrm{z})$ is a univalent function in $\nabla$, where $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; \mathrm{z})$ is given by (15). If:

$\gamma \mathrm{q}(z)-\varepsilon z \mathrm{q}^{\prime}(z) \prec \emptyset(\gamma, \mathrm{n}, \lambda, \mathrm{m}, \varepsilon ; z)$    (25)

Then,

$\mathrm{q}(z) \prec\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma$     (26)

and the best subordinant of (25) that is q.

Proof: Defined p in the shape,

$\mathrm{p}(z)=\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma$    (27)

by $\emptyset(w)=-\varepsilon$ and $\theta(w)=\gamma w, 0 \neq w$.

So, $\theta(w)$ and $\emptyset(w)$ are analytic in $C$ in addition $C \backslash\{$ zero $\}$ respectively and $\emptyset(w)$ does not equal zero, $w \in C \backslash\{z e r o\}$. Then:

$z \mathrm{q}^{\prime}(z) \emptyset \mathrm{q}(z)=-\varepsilon z \mathrm{q}^{\prime}(z)=\mathrm{Q}(z)$

We got starlike univalent" in $\nabla$ is $Q(z)$.

$\operatorname{Real}\left\{\frac{\theta^{\prime}(\mathrm{q}(z))}{\emptyset(\mathrm{q}(z))}\right\}=\operatorname{Re}\left\{\frac{-\gamma \mathrm{q}^{\prime}(z)}{\varepsilon}\right\}>0$

Now, obtain:

$\gamma \mathrm{p}(z)-\varepsilon z \mathrm{p}^{\prime}(z)=\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z)$    (28)

where, $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z)$ is get by (15).

By (25) and (28);

$\gamma q(z)-\varepsilon z q^{\prime}(z)<\gamma \mathrm{p}(z)-\varepsilon \mathrm{p}^{\prime}(z)$     (29)

where, $\mathrm{q}(z) \prec \mathrm{p}(z)$ by (Lemma (3)). By using (27), will get to the desired result.

The concept of Sandwich represented by (Theorems (5) and (6)).

3. Subordination and Superordination

Theorem (5): Let the convex univalent in $\nabla$ is $\mathrm{q}_1$ (zero) $=1$, Real $\{\varepsilon\}>0$ and let the univalent in $\nabla$ is $\mathrm{q}_2($ zero $)=1$ and realize (8), let $\mathcal{F} \in \varphi$ such that.

$\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma \in \mathrm{Q} \cap \mathrm{H}[1,1]$

and,

$(1-\varepsilon \mu)\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{s, a, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}\right)$

is univalent function in $\nabla$.

If,

$\mathrm{q}_1(z)+\frac{\varepsilon}{\gamma} \mathrm{zq}^{\prime}{ }_1(z)$ subordinant to $(1-\varepsilon \mu)\left(\frac{\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right.}{z}\right)^\gamma+\varepsilon \mu\left(\frac{I_{S, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma\left(\frac{I_{S,,,, \mu}^\lambda \mathcal{F}(z)}{I_{s, a, \mu}^{\lambda \lambda+1} \mathcal{F}(z)}\right) \prec \mathrm{q}_2(z)+\frac{\varepsilon}{\gamma} \mathrm{zq}_2^{\prime}(z)$

$\mathrm{q}_1(z)<\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma<\mathrm{q}_2(z)$

We got concepts best subordinant in addition best dominant $\mathrm{q}_1$ and $\mathrm{q}_2$ are respectively.

Theorem (6): Suppose the univalent convex in $\nabla$ is $\mathrm{q}_1, \mathrm{q}_1$ (zero) $=1$ and satisfies (24), let the univalent function in $\nabla$ is $\mathrm{q}_2$, $\mathrm{q}_2$ (zero) $=1$, realize (13), let $\mathcal{F} \in \varphi$ satisfies:

$\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right)^\gamma \in \mathrm{Q} \cap \mathrm{H}[1,1]$,

and $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; \mathrm{z})$ is univalent in $\nabla$, where $\emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; \mathrm{z})$ we got by (15).

If $\gamma \mathrm{q}_1(z)-\varepsilon z \mathrm{q}_1^{\prime}(z) \emptyset(\gamma, \mathrm{s}, \lambda, \mathrm{a}, \mu, \varepsilon ; z)<\gamma \mathrm{q}_2(z)-\varepsilon z \mathrm{q}_2^{\prime}(z)$,

Then,

$\mathrm{q}_1(z) \prec\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right) \prec \mathrm{q}_2(z)$

We got the concepts of best subordinant and best dominant $\mathbb{q}_1$ and $\mathbb{q}_2$, respectively.

4. Conclusions

The conclusion of this research gained subordination and superordination results by using the linear operator $I_{S, a, \mu}^{\lambda+1}$  for example for these results:

$1-\mathrm{q}_1(z) \prec\left(\frac{I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)}{z}\right)^\gamma \prec \mathrm{q}_2(z)$

$2-\mathrm{q}_1(z) \prec\left(\frac{\mathrm{t} I_{s, a, \mu}^{\lambda+1} \mathcal{F}(z)+(1-\mathrm{t}) I_{s, a, \mu}^\lambda \mathcal{F}(z)}{z}\right) \prec \mathrm{q}_2(z)$

  References

[1] Cotîrlă, L. (2009). A differential sandwich theorem for analytic functions defined by the integral operator. Studia Universitatis Babes-Bolyai, Mathematica, (2).

[2] Shammugam, T.N., Ramachandran, C., Darus, M., Sivasubramanian, S. (2007). Differential sandwich theorems for some subclasses of analytic functions involving a linear operator. Acta Mathematica Universitatis Comenianae, 76(2): 287-294.

[3] Goyal, S.P., Goswami, P., Silverman, H. (2008). Subordination and superordination results for a class of analytic multivalent functions. International Journal of Mathematics and Mathematical Sciences, 2008: 561638. https://doi.org/10.1155/2008/561638

[4] Atshan, W.G. (2020). On some sandwich theorems of analytic functions involving Noor-Salagean operator. Advances in Mathematics Scientific Journal, 9(10): 1857-8438. https://doi.org/10.37418/amsj.9.10.74

[5] Atshan, W.G., HadiAbd, E. (2017). Differential subordination and superordinationof univalent functions by using generalized integral operator and Bernardin-libera-Livingston integral operator. American Journal of Scientific Research, (109): 13-18.

[6] Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J. (2020). On the connection problem for Painleve differential equation in view of geometric function theory. Mathematics, 8(7): 1198. https://doi.org/10.3390/math8071198

[7] Atshan, W.G., Hussain, K.O. (2016). Subordination results for certain subclass of univalent functions. European Journal of Scientific Research, 142(1): 5-11.

[8] Atshan, W.G., Jawad, S.A.A.H. (2019). On differential sandwich results for analytic functions. Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(1): 96.

[9] Miller, S.S., Mocanu, P.T. (2003). Subordinants of differential superordinations. Complex Variables, 48(10): 815-826. https://doi.org/10.1080/02781070310001599322

[10] Komatu, Y. (1990). On analytic prolongation of a family of operators. Mathematica (cluj), 32(55): 141-145.

[11] Atshan, W.G., Badawi, E.I. (2019). On sandwich theorems for certain univalent functions defined by a new operator. Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2): 72-80.

[12] AL-Ameedee, S.A., Atshan, W.G., Ali AL-Maamori, F. (2020). On sandwich results of univalent functions defined by a linear operator. Journal of Interdisciplinary Mathematics, 23(4): 803-809. https://doi.org/10.1080/09720502.2020.1727613

[13] Miller, S.S., Mocanu, P.T. (2000). Differential Subordinations: Theory and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781482289817

[14] Bulboacă, T. (2002). Classes of first-order differential superordinations. Demonstratio Mathematica, 35(2): 287-292.

[15] Bulboacă, T. (2005). Differential subordinations and superordinations: Recent results. Casa Cărt̨ii de S̨tiint̨ă, XXXV(2): 287-292. https://doi.org/10.1515/dema-2002-0209

[16] Murugusundaramoorthy, G., Magesh, N. (2006). Differential subordinations and superordinations for analytic functions defined by the Dziok-Srivastava linear operator. Journal of Inequalities in Pure andApplied Mathematics, 7(4): 1-9.

[17] Murugusundaramoorthy, G., Magesh, N. (2009). Differential subordinations and superordinations for analytic functions defined by convolution structure. Studia Universitatis Babes-Bolyai, Mathematica, 2.

[18] Murugusundaramoorthy, G., Magesh, N. (2006). Differential subordinations and superordinations for analytic functions defined by the Dziok-Srivastava linear operator. Journal of Inequalities in Pure andApplied Mathematics, 7(4): 1-9.

[19] Aouf, M.K., Bulboacă, T. (2010). Subordination and superordination properties of multivalent functions defined by certain integral operator. Journal of the Franklin Institute, 347(3): 641-653. https://doi.org/10.1016/j.jfranklin.2010.01.001

[20] Lupas, A.A. (2011). On special differential subordinations using a generalized Salagean operator and Ruscheweyh derivative. Journal of Computational Analysis and Applications, 61(4): 1048-1058. https://doi.org/10.1016/j.camwa.2010.12.055