Design of Ventilated Cross Flow Heat Sinks

Design of Ventilated Cross Flow Heat Sinks

Michele TrancossiJose Pascoa 

Sheffield Hallam University, Sheffield UK, Cedita-Romaero, Bucarest, RO

Universitade da Beira Interior, Covilla, PT

Corresponding Author Email: 
mtrancossi@gmail.com
Page: 
90-97
|
DOI: 
https://doi.org/10.18280/mmc_c.790305
Received: 
15 March 2018
|
Accepted: 
22 May 2018
|
Published: 
30 June 2018
| Citation

OPEN ACCESS

Abstract: 

This paper presents a new design methodology of cross flow ventilated heat sinks. An accurate design of both finned and circular pin system with inline configuration has been produced. The model is based on the well tested experimental lumped parameter analysis of cross-flow heat exchangers by Gnielinski. The presented method is intended to support the design of heat sinks with well defined performances of cross flow ventilated heat sinks. An evaluation of the physical properties of the sink is performed and different cases are calculated. They allow comparing the performance in terms of both geometrical parameters of the exchanger and air speed. An effective model of the equations is produced and on this basis a multi-objective optimization is performed.

Keywords: 

heat sink, cross flow, lumped parameters, optimization, model

1. Introduction
2. Definition of the Problem
3. Methodology
4. Calculations
5. Results
6. Comparative Analysis
7. Conclusions
Nomenclature
  References

[1] Dumas A, Trancossi M. (2009). A mathematical based design methodology for crossflow heat exchangers. In ASME 2009 International Mechanical Engineering Congress and Exposition 1159-1165. American Society of Mechanical Engineers.

[2] Dumas A, Trancossi M. (2009). Application of heat pipes to the uniformation of thermal fluxes in industrial exhausts. In ASME 2009 International Mechanical Engineering Congress and Exposition 305-312. American Society of Mechanical Engineers.

[3] Dumas A, Trancossi M. (2009). Design of exchangers based on heat pipes for hot exhaust thermal flux, with the capability of thermal shocks absorption and low level energy recovery 2009-01-3074. SAE Technical Paper.

[4] Spiga G, Spiga M. (1987). Two-dimensional transient solutions for crossflow heat exchangers with neither gas mixed. Journal of Heat Transfer 109(2): 281-286.

[5] Spiga M, Spiga G. (1988). Transient temperature fields in crossflow heat exchangers with finite wall capacitance. Journal of heat transfer 110(1): 49-53.

[6] Spiga M, Spiga G. (1992). Step response of the crossflow heat exchanger with finite wall capacitance. International Journal of Heat and Mass Transfer 35(2): 559-565.

[7] Mishra M, Das PK, Sarangi S. (2004). Transient behavior of crossflow heat exchangers with longitudinal conduction and axial dispersion. Journal of Heat Transfer 126(3): 425-433.

[8] Mishra M, Das PK, Sarang, S. (2006). Transient behaviour of crossflow heat exchangers due to perturbations in temperature and flow. International Journal of Heat and Mass Transfer 49(5-6): 1083-1089.

[9] Mishra M, Das P.K, Sarangi S. (2004). Transient behavior of crossflow heat exchangers with longitudinal conduction and axial dispersion. Journal of Heat Transfer 126(3): 425-433.

[10] Bosnjakovic F. (1938). Kampf den nichtumkehrbarkeiten. Arch. Waermewirtsch 19: 1-2.

[11] Bejan A. (1979). A study of entropy generation in fundamental convective heat transfer. Journal of Heat Transfer, 101(4): 718-725.

[12] Bejan A. (1980). Second law analysis in heat transfer. Energy 5(8-9): 720-732.

[13] Kim Y, Lorente S, Bejan A. (2010). Constructal multi-tube configuration for natural and forced convection in cross-flow. International Journal of Heat and Mass Transfer 53(23-24): 5121-5128.

[14] Kestin J. (1979). A course in thermodynamics 1. CRC Press.

[15] Kestin J. (1980). Availability: the concept and associated terminology. Energy 5(8-9): 679-692.

[16] Grimison ED. (1937). Correlation and utilization of New Data on Flow Resistance nd Heat Transfer for Cross Flow of Gases Over Tube Banks, Transactions of the ASME 59: 583-594. 

[17] Zhukauskas A, Ulinskas R. (1988). Heat Transfer in Tube Banks in Crossflow. Hemisphere Publishing Corporation. New York, NY.

[18] Bergman TL, Incropera FP, DeWitt DP, Lavine AS. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.

[19] Gnielinski V. (1975). Neue Gleichungen für den Wärme-und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forschung im Ingenieurwesen A 41(1): 8-16. 

[20] Gnielinski V. (1975). Berechnung mittlerer Wärme-und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung. Forschung im Ingenieurwesen A 41(5): 145-153.

[21] Gnielinski V. (1979). Equations for calculating heat transfer in single tube rows and banks of tubes in transverse flow. Int. Chem. Eng.;(United States) 19(3).

[22] Scilab Enterprises. (2015). Scilab 5.5.2 - Free and Open Source software for numerical computation. Scilab Enterprises. Orsay. France 3.

[23] Heat Sink Calculator (retrieved April 2018). https://www.heatsinkcalculator.com/