Phase Transitions of the WO3 Layer in Photoelectrochromic Devices

Phase Transitions of the WO3 Layer in Photoelectrochromic Devices

Anneke GeorgAndreas Georg Urša Opara Krašovec Volker Wittwer 

Freiburg Materials Research Centre, Stefan Meier Str. 21, 79104 Freiburg, Germany

Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79100 Freiburg, Germany

Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia

Corresponding Author Email: 
anneke.georg@fmf.uni-freiburg.de
Page: 
317-325
|
Received: 
30 May 2005
| |
Accepted: 
9 March 2006
| | Citation
Abstract: 

Photoelectrochromic systems are a combination of a dye solar cell and an electrochromic material, usually WO3. They change their transmittance on illumination. We prepared a particularly advantageous configuration, which can be coloured and bleached under illumination, and bleached in the dark. During colouring, electrons and Li+ cations are intercalated into the electrochromic WO3 layer. Due to this intercalation, the WO3 crystals change their structure from monoclinic through tetragonal to cubic. The intercalation and the phase transition are completely reversible. We investigated these phase transitions with the help of electrochemical potential measurement, IR spectroscopy and X-ray diffractometry, applied to the separate layers. We discuss the effect of the phase transition on the colouring and bleaching characteristics of the photoelectrochromic device, i.e. the time dependence of the voltage and the optical density.

Keywords: 

photoelectrochromic, electrochromic, window, WO3, phase transition

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements
  References

[1] C.G. Granqvist, “Handbook on Inorganic Electrochromic Materials”, ELSEVIER SCIENCE B.V., Amsterdam, Netherlands, 1995.

[2] C.G. Granqvist, Solar Energy Materials and Solar Cells 60, 201 (2000).

[3] B. O’Regan, M. Grätzel, Nature 353, 737 (1991).

[4] K. Kalyanasundaram, M. Grätzel, Coordination Chemistry Reviews 77, 347 (1998).

[5] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, Nature 383, 608 (1996).

[6] G. Teowee, T. Gudgel, K. McCarthy, A. Agrawal, P. Allemand, J. Cronin, Electrochim. Acta 44, 3017 (1999).

[7] F. Pichot, S. Ferrere, R. J. Pitts, B. A. Gregg, J. Electrochem. Soc. 146 (11), 4324 (1999).

[8] A. Hauch A. Georg, S. Baumgärtner, U. Opara Krašovec, B. Orel, Electrochim. Acta 46, 2131 (2001).

[9] A. Hauch, A. Georg, U. Opara Krašovec, B. Orel, J. Electrochem. Soc. 149 (9), H159 (2002).

[10] U. Opara Krašovec, Anneke Georg, Andreas Georg, G. Dražiˇc, submitted to the Journal of Sol-Gel Science and Technology.

[11] Q. Zhong, J.R. Dahn, K. Colbow, Physical Review B 46, N 4, 2554 (1992).

[12] U. Opara Krašovec, A. Šurca Vuk, B. Orel, Electrochim. Acta 46, 1921 (2001).

[13] U. Opara Krašovec, R. Ješe, B. Orel, J. Grdadolnik, G. Dražiˇc, Monatshefte für Chemie (Chemical Monthly) 133, 1115 (2002).

[14] B. Orel, U. Opara Krašovec, U. Lavrenˇciˇc Štangar, P. Judeinstein, Journal of Sol-Gel Science and Tecnology 11, 87 (1998).

[15] N. Grošelj, M. Gaberšˇcek, U. Opara Krašovec, B. Orel, G. Dražiˇc, P. Judeinstein, Solid State Ionics 125, 125 (1999).

[16] A. Hauch, A. Georg, U. Opara Krašovec, B. Orel, J. Electrochem. Soc. 149 (9), A1208 (2002).

[17] A. Šurca, B. Orel, G. Dražiˇc, B. Pihlar, J. Electrochem. Soc. 146, 232 (1999).

[18] J. Ferber, R. Stangl, J. Luther, Solar Energy Materials and Solar Cells 53, 29 (1998).

[19] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B 106, 2967 (2002)

[20] N.W. Duffy, L.M. Peter, R.M.G. Rajapakse, K.G.U. Wijayantha, Electrochemistry Communications 2, 658 (2000)

[21] R.S. Crandall, P.J. Wojtowicz and B.W. Faughnan, Solid State Communications 18, 1409 (1976).

[22] M.L. Hitchman, J. Electroanal. Chem. 85, 135 (1977)

[23] B. Reichman, A.J. Bard, J. Electrochem. Soc. 127, 241 (1980)